@article{ZVMMF_2016_56_6_a3,
author = {M. D. Bragin and B. V. Rogov},
title = {Minimal dissipation hybrid bicompact schemes for hyperbolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {958--972},
year = {2016},
volume = {56},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a3/}
}
TY - JOUR AU - M. D. Bragin AU - B. V. Rogov TI - Minimal dissipation hybrid bicompact schemes for hyperbolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 958 EP - 972 VL - 56 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a3/ LA - ru ID - ZVMMF_2016_56_6_a3 ER -
M. D. Bragin; B. V. Rogov. Minimal dissipation hybrid bicompact schemes for hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 958-972. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a3/
[1] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, 1973 | MR | Zbl
[2] Vázquez-Cendón E., Hidalgo A., Navarro P. G., Cea L., Numerical methods for hyperbolic equations, Taylor Francis Group, 2013
[3] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 103:1 (1992), 16–42 | DOI | MR | Zbl
[4] Xuliaug Liu, Shuhai Zhang, Hanxin Zhang, Chi-Wang Shu, “A new class of central compact schemes with spectral-like resolution. I: Linear schemes”, J. Comput. Phys., 248 (2013), 235–256 | DOI | MR
[5] Belotserkovskii O. M., Byrkin A. P., Mazurov A. P., Tolstykh A. I., “Raznostnyi metod povyshennoi tochnosti dlya rascheta techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1480–1490 | MR | Zbl
[6] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[7] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 672–695 | MR | Zbl
[8] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matem. modelirovanie, 20:1 (2008), 99–116 | MR | Zbl
[9] Sengupta T. K., Ganerwal G., Dipankar A., “High accuracy compact schemes and Gibbs' phenomenon”, J. Sci. Comput., 21:3 (2004), 253–268 | DOI | MR | Zbl
[10] Lax P. D., “Gibbs phenomena”, J. Sci. Comput., 28:2/3 (2006), 445–449 | DOI | MR | Zbl
[11] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[12] Cockburn B., Shu C.-W., “Nonlinearly stable compact schemes for shock calculations”, SIAM J. Numer. Anal., 31:3 (1994), 607–627 | DOI | MR | Zbl
[13] Yee H. C., “Explicit and implicit multidimensional compact high-resolution shock-capturing methods: Formulation”, J. Comput. Phys., 131:1 (1997), 216–232 | DOI | Zbl
[14] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 1019–1038 | MR | Zbl
[15] Fiorina B., Lele S. K., “An artificial nonlinear diffusivity method for supersonic reacting flows with shocks”, J. Comput. Phys., 222 (2006), 246–264 | DOI | MR
[16] Kawai S., Lele S. K., “Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes”, J. Comput. Phys., 227:22 (2008), 9498–9526 | DOI | MR | Zbl
[17] Kurganov A., Liu Y., “New adaptive artificial viscosity method for hyperbolic systems of conservation laws”, J. Comput. Phys., 231:24 (2012), 8114–8132 | DOI | MR | Zbl
[18] Ekaterinaris J. A., “Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics”, J. Comput. Phys., 156:2 (1999), 272–299 | DOI | MR | Zbl
[19] Yee H. C., Sandham N. D., Djomehri M. J., “Low-dissipative high-order shock-capturing methods using characteristic-based filters”, J. Comput. Phys., 150:1 (1999), 199–238 | DOI | MR | Zbl
[20] Yee H. C., Sjögreen B., “Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems”, Comput. Fluids, 37:5 (2008), 593–619 | DOI | MR | Zbl
[21] Darian H. M., Esfahanian V., Hejranfar K., “A shock-detecting sensor for filtering of high-order compact finite difference schemes”, J. Comput. Phys., 230:3 (2011), 494–514 | DOI | MR | Zbl
[22] Adams N. A., Shariff K., “A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127:1 (1996), 27–51 | DOI | MR | Zbl
[23] Pirozzoli S., “Conservative hybrid compact-WENO schemes for shock-turbulence interaction”, J. Comput. Phys., 178:1 (2002), 81–117 | DOI | MR | Zbl
[24] Ren Y.-X., Liu M., Zhang H., “A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws”, J. Comput. Phys., 192:2 (2003), 365–386 | DOI | MR | Zbl
[25] Shen Y., Yang G., “Hybrid finite compact-WENO schemes for shock calculation”, Int. J. Numer. Meth. Fluids, 53:4 (2007), 531–560 | DOI | MR | Zbl
[26] Deng X., Maekawa H., “Compact high-order accurate nonlinear schemes”, J. Comput. Phys., 130:1 (1997), 77–91 | DOI | MR | Zbl
[27] Deng X., Zhang H., “Developing high-order weighted compact nonlinear schemes”, J. Comput. Phys., 165:1 (2000), 22–44 | DOI | MR | Zbl
[28] Jiang L., Shan H., Liu C., “Weighted compact scheme for shock capturing”, Int. J. Comput. Fluid Dyn., 15:2 (2001), 147–155 | DOI | MR | Zbl
[29] Zhang S., Jiang S., Shu C.-W., “Development of nonlinear weighted compact schemes with increasingly higher order accuracy”, J. Comput. Phys., 227:15 (2008), 7294–7321 | DOI | MR | Zbl
[30] Ghosh D., Baeder J. D., “Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws”, SIAM J. Sci. Comput., 34:3 (2012), A1678–A1706 | DOI | MR | Zbl
[31] Guo Y., Xiong T., Shi Y., “A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations”, J. Comput. Phys., 274 (2014), 505–523 | DOI | MR
[32] Huankun Fu, Zhengjie Wang, Yonghua Yan, Chaoqun Liu, “Modified weighted compact scheme with global weights for shock capturing”, Comput. Fluids, 96 (2014), 165–176 | DOI | MR
[33] Rogov B. V., Mikhailovskaya M. N., “Monotonnaya vysokotochnaya kompaktnaya skhema beguschego scheta dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 23:12 (2011), 65–78 | Zbl
[34] Rogov B. V., “Monotonnaya bikompaktnaya skhema dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, Dokl. AN, 446:5 (2012), 504–509 | Zbl
[35] Rogov B. V., “Vysokotochnaya monotonnaya kompaktnaya skhema beguschego scheta dlya mnogomernykh uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 264–274 | DOI | MR | Zbl
[36] Chikitkin A. V., Rogov B. V., Utyuzhnikov S. V., “High-order accurate monotone compact rumming scheme for multidimensional hyperdolic equations”, Appl. Numer. Math., 93 (2015), 150–163 | DOI | MR | Zbl
[37] Grudnitskii V. G., Prokhorchuk Yu. A., “Odin priem postroeniya raznostnykh skhem s proizvolnym poryadkom approksimatsii differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN, 234:6 (1977), 1249–1252 | MR | Zbl
[38] Belotserkovskii O. M., Grudnitskii V. G., Prokhorchuk Yu. A., “Raznostnaya skhema vtorogo poryadka tochnosti na minimalnom shablone dlya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:1 (1983), 119–126 | MR | Zbl
[39] Wornom S. F., “Application of two-point implicit central-difference methods to hyperbolic systems”, Comput. Fluids, 20:3 (1991), 321–331 | DOI | MR | Zbl
[40] Tolstykh A. I., “O gibridnykh skhemakh s multioperatorami vysokogo poryadka dlya scheta razryvnykh reshenii”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1481–1502 | DOI | Zbl
[41] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Dokl. AN, 436:5 (2011), 600–605 | Zbl
[42] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 2009 | MR | Zbl
[43] Liska R., Wendroff B., “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comput., 25:3 (2003), 995–1017 | DOI | MR | Zbl
[44] Bragin M. D., Rogov B. V., “Gibridnye skhemy beguschego scheta dlya uravnenii giperbolicheskogo tipa na osnove protivopotochnykh i biokompaktnykh simmetrichnykh skhem”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1196–1207 | DOI | Zbl
[45] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Izd-vo SO RAN, Novosibirsk, 1985 | MR
[46] Guermond J.-L., Pasquetti R., Popov B., “Entropy viscosity method for nonlinear conservation laws”, J. Comput. Phys., 230 (2011), 4248–4267 | DOI | MR | Zbl
[47] Friedrichs K. O., Hyers D. H., “Symmetric hyperbolic linear differential equations”, Commun. Pure Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl
[48] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR