@article{ZVMMF_2016_56_6_a2,
author = {A. I. Tolstykh},
title = {On the use of multioperators in the construction of high-order grid approximations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {943--957},
year = {2016},
volume = {56},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a2/}
}
TY - JOUR AU - A. I. Tolstykh TI - On the use of multioperators in the construction of high-order grid approximations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 943 EP - 957 VL - 56 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a2/ LA - ru ID - ZVMMF_2016_56_6_a2 ER -
A. I. Tolstykh. On the use of multioperators in the construction of high-order grid approximations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 943-957. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a2/
[1] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. AN, 366:3 (1999), 319–322 | MR | Zbl
[2] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl
[3] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1. Higherthan-fifth order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI | MR | Zbl
[4] Lipavskii M. V., Tolstykh A. I., Chigerev E. N., “O skheme s multioperatornymi approksimatsiyami 9-go poryadka dlya parallelnykh vychislenii i o ee primenenii v zadachakh pryamogo chislennogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1433–1452 | MR
[5] Savelev A. D., Tolstykh A. I., Shirobokov D. A., “O primenenii kompaktnykh i multioperatornykh skhem dlya chislennogo modelirovaniya akusticheskikh polei, vozbuzhdaemykh volnami neustoichivosti v sverkhzvukovykh struyakh”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1280–1294 | MR | Zbl
[6] Lipavskii M. V., Savelev A. D., Tolstykh A. I., Shirobokov D. A., “Multioperatornye skhemy do 18-go poryadka tochnosti s prilozheniyami k zadacham neustoichivosti i akustiki strui”, Uch. zapiski TsAGI, XLIII:3 (2012), 16–33
[7] Tolstykh A. I., Shirobokov D. A., “Fast calculations of screech using highly accurate multioperators-based schemes”, J. Appl. Acoustics, 74 (2013), 102–109 | DOI
[8] Tolstykh A. I., “O multioperatornom metode postroeniya approksimatsii i skhem proizvolno vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 56–73 | MR | Zbl
[9] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR
[10] Tam C. K. W., Webb J. C., “Dispersion-relation preserving finite difference schemes for computational acoustics”, J. Comput. Phys., 107 (1993), 262 | DOI | MR | Zbl
[11] Adams N. A., Shariff K., “A high resolution Compact-ENO schemes for shock-turbulence interaction problems”, J. Comput. Phys., 127 (1996), 27–51 | DOI | MR | Zbl
[12] Tam C. K. W., “Problem 1-aliasing”, Fourth Computational Aeroacoustics (CAA) Workshop on benchmark problems, 2004, NAS/CP-2004-1259