Fibrin polymerization as a phase transition wave: A mathematical model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 1138-1148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of fibrin polymerization is described. The problem of the propagation of phase transition wave is reduced to a nonlinear Stefan problem. A one-dimensional discontinuity fitting difference scheme is described, and the results of one-dimensional computations are presented.
@article{ZVMMF_2016_56_6_a17,
     author = {A. I. Lobanov},
     title = {Fibrin polymerization as a phase transition wave: {A} mathematical model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1138--1148},
     year = {2016},
     volume = {56},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a17/}
}
TY  - JOUR
AU  - A. I. Lobanov
TI  - Fibrin polymerization as a phase transition wave: A mathematical model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1138
EP  - 1148
VL  - 56
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a17/
LA  - ru
ID  - ZVMMF_2016_56_6_a17
ER  - 
%0 Journal Article
%A A. I. Lobanov
%T Fibrin polymerization as a phase transition wave: A mathematical model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1138-1148
%V 56
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a17/
%G ru
%F ZVMMF_2016_56_6_a17
A. I. Lobanov. Fibrin polymerization as a phase transition wave: A mathematical model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 1138-1148. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a17/

[1] Belotserkovskii O. M., “Reshenie zadach bolshoi slozhnosti na superkompyuterakh: opyt i tendentsii”, Fiztekhovskii proryv — ugol ataki: k 80-letiyu akademika O. M. Belotserkovskogo, Nauka, M., 2005, 265–286

[2] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR

[3] Khanin M., Semenov V., “A mathematical model of the kinetics of blood coagulation”, J. Theor. Biol., 136 (1989), 127–134 | DOI | MR

[4] Ataullakhanov F. I., Guriya G. T., “Prostranstvennye aspekty dinamiki svertyvaniya krovi. I. Gipoteza”, Biofizika, 39:1 (1994), 89–96

[5] Ataullakhanov F. I., Guriya G. T., Safroshkina A. Yu., “Prostranstvennye aspekty dinamiki svertyvaniya krovi. II. Fenomenologicheskaya model”, Biofizika, 39:1 (1994), 97–104

[6] O. M. Belotserkovskii, A. S. Kholodov (red.), Kompyuternye modeli i progress meditsiny, Nauka, M., 2001

[7] O. M. Belotserkovskii (red.), Kompyuter i mozg. Novye tekhnologii, Nauka, M., 2005

[8] O. M. Belotserkovskii, A. S. Kholodov (red.), Meditsina v zerkale informatiki, Nauka, M., 2008

[9] Zarnitsina V. I., Ataullakhanov F. I., Lobanov A. I., Morozova O. L., “Dynamics of spatially nonuniform patterning in the model of blood coagulation”, Chaos (Woodbury, N.Y.), 11:1 (2001), 57–70 | DOI | Zbl

[10] Lobanov A. I., Starozhilova T. K., Zarnitsina V. I., Ataullakhanov F. I., “Sravnenie dvukh matematicheskikh modelei dlya opisaniya prostranstvennoi dinamiki protsessa svertyvaniya krovi”, Matem. modelirovanie, 15:1 (2003), 14 | MR | Zbl

[11] Ataullakhanov F. I., Zarnitsina V. I., Kondratovich A. Yu. i dr., “Osobyi klass avtovoln — avtovolny s ostanovkoi — opredelyaet prostranstvennuyu dinamiku svertyvaniya krovi”, Uspekhi fizicheskikh nauk, 172:6 (2002), 671–690 | DOI

[12] Ataullakhanov F. I., Lobanova E. S., Morozova O. L. i dr., “Slozhnye rezhimy rasprostraneniya vozbuzhdeniya i samoorganizatsiya v modeli svertyvaniya krovi”, Uspekhi fizicheskikh nauk, 177:1 (2007), 87–104 | DOI

[13] Panteleev M. A., Balandina A. N., Lipets E. N. et al., “Task-oriented modular decomposition of biological networks: trigger mechanism in blood coagulation”, Biophysical J., 98:9 (2010), 1751–1761 | DOI

[14] Anand M., Rajagopal K., Rajagopal K. R., “A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood”, J. Theoret. Med., 5 (2003), 183–218 | DOI | MR | Zbl

[15] Rukhlenko A. S., Zlobina K. E., Guriya G. T., “Gidrodinamicheskaya aktivatsiya svertyvaniya krovi v stenozirovannykh sosudakh. Teoreticheskii analiz”, Kompyuternye issledovaniya i modelirovanie, 4:1 (2012), 155–183

[16] Lobanov A. I., Nikolaev A. V., Starozhilova T. K., “Mathematical model of fibrin polymerization”, Math. Model. Nat. Phenom., 6:7 (2001), 55–69 | DOI | MR

[17] Belotserkovskii O. M., “Matematicheskoe modelirovanie na superkompyuterakh (opyt i tendentsii)”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1221–1236

[18] Panteleev M. A., Ovanesov M. V. et al., “Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively”, Biophys J., 90:5 (2006), 1489–1500 | DOI

[19] Ermakova E. A., Panteleev M. A., Shnol E. E., “Blood coagulation and propagation of autowaves in flow”, Pathophysiol Haemost Thromb., 34:2–3 (2005), 135–142

[20] Collet J. P., Park D., Lesty C., Soria J., Soria C., Montalescot G., Weisel J. W., “Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy”, Arterioscler. Thromb. Vasc. Biol., 20:5 (2000), 1354–1361 | DOI

[21] Lobanov A. I., Starozhilova T. K., Guriya G. T., “Chislennoe issledovanie strukturoobrazovaniya pri svertyvanii krovi”, Matem. modelirovanie, 9:8 (1997), 83–95 | MR | Zbl

[22] Guriya G. T., Starozhilova T. K., Lobanov A. I., “Formirovanie aksialno-simmetrichnykh struktur v vozbudimykh sredakh s aktivnym vosstanovleniem”, Biofizika, 43:3 (1998), 526–534

[23] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR