Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 1082-1092 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Techniques that improve the accuracy of numerical solutions and reduce their computational costs are discussed as applied to continuum mechanics problems with complex time-varying geometry. The approach combines shock-capturing computations with the following methods: (1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive meshes for minimizing the approximation errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit-implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov–Galerkin method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of solutions for providing their monotonicity and conservativeness.
@article{ZVMMF_2016_56_6_a12,
     author = {N. G. Burago and I. S. Nikitin and V. L. Yakushev},
     title = {Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1082--1092},
     year = {2016},
     volume = {56},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a12/}
}
TY  - JOUR
AU  - N. G. Burago
AU  - I. S. Nikitin
AU  - V. L. Yakushev
TI  - Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1082
EP  - 1092
VL  - 56
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a12/
LA  - ru
ID  - ZVMMF_2016_56_6_a12
ER  - 
%0 Journal Article
%A N. G. Burago
%A I. S. Nikitin
%A V. L. Yakushev
%T Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1082-1092
%V 56
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a12/
%G ru
%F ZVMMF_2016_56_6_a12
N. G. Burago; I. S. Nikitin; V. L. Yakushev. Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 1082-1092. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a12/

[1] Burago N. G., Kukudzhanov V. N., “Obzor kontaktnykh algoritmov”, Izv. RAN. Mekhan. tverdogo tela, 2005, no. 1, 44–85 | MR

[2] B. Older, S. Fernbakh, M. Rotenberg (red.), Vychislitelnye metody v gidrodinamike, Mir, M., 1967

[3] O. M. Belotserkovskii (red.), Chislennye metody v mekhanike zhidkostei, Mir, M., 1973

[4] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits, Nauka, M., 1982

[5] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[6] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR

[7] Kruglyakova L. V., Neledova A. V., Tishkin V. F., Filatov A. Yu., “Nestrukturirovannye adaptivnye setki dlya zadach matematicheskoi fiziki (obzor)”, Mat. modelirovanie, 10:3 (1997), 93–116

[8] Gilmanov A. N., Metody adaptivnykh setok v zadachakh gazovoi dinamiki, Fizmatlit, M., 2000 | MR

[9] Prokopov G. P., “Vybor parametrov pri variatsionnom podkhode k raschetu regulyarnykh setok”, Preprinty IPM im. M. V. Keldysha, 2006, 014, 32 pp.

[10] Liseikin V. D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 36:1 (2003), 3–41

[11] S. A. Ivanenko, “Variatsionnye metody postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 830–844 | MR | Zbl

[12] V. G. Bazhenov, V. L. Kotov, S. V. Zefirov, “Soglasovanie razlichnykh raznostnykh skhem v nestatsionarnykh zadachakh dinamiki sploshnykh sred metodom nalozhennykh setok”, Vestn. Nizhegorodskogo un-ta. Seriya Mekhan., 2006, no. 1(7), 134–140

[13] Azarenok B. N., O postroenii adaptivnykh podvizhnykh prostranstvennykh setok, VTs RAN, M., 2007

[14] Ushakova O. V. (ed.), Advances in Grid Generation, Nova Science Publishers, New York, 2007 | MR | Zbl

[15] Minakov A. V., Gavrilov A. A., Dekterev A. A., “Chislennyi algoritm resheniya prostranstvennykh zadach gidrodinamiki s podvizhnymi tverdymi telami i svobodnoi poverkhnostyu”, Sibirskii zh. industrialnoi matem., 11:4(36) (2008), 94–104 | MR | Zbl

[16] Kukudzhanov V. N., Vychislitelnaya mekhanika sploshnykh sred, Fizmatlit, M., 2008

[17] Liseikin V. D., Grid generation methods, Springer, Berlin, 2010 | MR | Zbl

[18] Burago N. G., “Formulirovka osnovnykh uravnenii mekhaniki sploshnoi sredy v podvizhnykh adaptivnykh koordinatakh”, Chislennye metody v mekhanike tverdogo deformiruemogo tela, ed. G. I. Pshenichnov, VTs AN SSSR, M., 1984, 32–49 | MR

[19] Burago N. G., Ivanenko S. A., “Primenenie uravnenii teorii uprugosti k postroeniyu adaptivnykh setok”, Tr. Vseross. konf. po prikl. geometrii, postroeniyu setok i vysokoproizvoditelnym vychisleniyam (Mokva, VTs RAN, 28 iyunya–1 iyulya 2004 g.), ed. V. A. Garanzha, VTs RAN, M., 2004, 107–118

[20] Brooks A. N., Hughes T. J. R., “Streamline Upwind Petrov–Galerkin formulation for convection dominated flows”, Comput. Meth. Appl. Mechan. Eng., 32 (1982), 199–259 | DOI | MR | Zbl

[21] Le Beau G. J., Ray S. E., Aliabadi S. K., Tezduyar T.-E., “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations”, Comput. Meth. Appl. Mechan. Engng., 104 (1993), 397–422 | DOI | Zbl

[22] Burago N. G., Glushko A. I., Kovshov A. N., “Termodinamicheskii metod vyvoda opredelyayuschikh sootnoshenii dlya modelei sploshnykh sred”, Izv. RAN. Mekhan. tverdogo tela, 2000, no. 6, 4–15

[23] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[24] Burago N. G., “Modelirovanie razrusheniya uprugoplasticheskikh tel”, Vychisl. mekhan. sploshnykh sred, 1:4 (2008), 5–20 | MR

[25] Burago N. G., Nikitin I. S., “Modelirovanie spekaniya s pomoschyu teorii plastichnosti”, Inzhenernyi zhurnal: nauka i innovatsii, 2013, no. 8 http://engjournal.ru/catalog/mathmodel/hidden/883.html

[26] Burago N. G., Nikitin I. S., Yakushev V. L., “Chislennoe modelirovanie spekaniya poroshkovykh materialov pod deistviem podvizhnogo lazernogo impulsa”, Vestn. kibernetiki, 2014, no. 3, 12–23

[27] Burago N. G., Kukudzhanov V. N., “Chislennoe reshenie uprugoplasticheskikh zadach metodom konechnykh elementov. Paket programm ASTRA”, Vychisl. mekhan. tverdogo deformiruemogo tela, 2, Nauka, M., 1991, 78–122

[28] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 816–827 | MR

[29] Uilkinson Dzh., Rainsh K., Spravochnik algoritmov na yazyke ALGOL. Lineinaya algebra, ed. Yu. I. Tolcheev, Mashinostroenie, M., 1976

[30] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[31] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR