Boundary control problems for quasilinear systems of hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 927-942 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For quasilinear systems of hyperbolic equations, the nonclassical boundary value problem of controlling solutions with the help of boundary conditions is considered. Previously, this problem was extensively studied in the case of the simplest hyperbolic equations, namely, the scalar wave equation and certain linear systems. The corresponding problem formulations and numerical solution algorithms are extended to nonlinear (quasilinear and conservative) systems of hyperbolic equations. Some numerical (grid-characteristic) methods are considered that were previously used to solve the above problems. They include explicit and implicit conservative difference schemes on compact stencils that are linearizations of Godunov's method. The numerical algorithms and methods are tested as applied to well-known linear examples.
@article{ZVMMF_2016_56_6_a1,
     author = {A. E. Alekseenko and A. S. Kholodov and Ya. A. Kholodov},
     title = {Boundary control problems for quasilinear systems of hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {927--942},
     year = {2016},
     volume = {56},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a1/}
}
TY  - JOUR
AU  - A. E. Alekseenko
AU  - A. S. Kholodov
AU  - Ya. A. Kholodov
TI  - Boundary control problems for quasilinear systems of hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 927
EP  - 942
VL  - 56
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a1/
LA  - ru
ID  - ZVMMF_2016_56_6_a1
ER  - 
%0 Journal Article
%A A. E. Alekseenko
%A A. S. Kholodov
%A Ya. A. Kholodov
%T Boundary control problems for quasilinear systems of hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 927-942
%V 56
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a1/
%G ru
%F ZVMMF_2016_56_6_a1
A. E. Alekseenko; A. S. Kholodov; Ya. A. Kholodov. Boundary control problems for quasilinear systems of hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 927-942. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a1/

[1] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965

[2] Romanov V. G., Obratnye zadachi dlya differentsialnykh uravnenii, Izd-vo NGU, Novosibirsk, 1973; Кабанихин С. И., “О конечно-разностном методе определения коэффициентов гиперболического уравнения”, Ж. вычисл. матем. и матем. физ., 19:2 (1979), 417–425 | MR | Zbl

[3] Ilin V. A., “Volnovoe uravnenie s granichnym upravleniem na dvukh kontsakh za proizvolnyi promezhutok vremeni”, Differents. ur-niya, 35:11 (1999), 1517–1534 | MR | Zbl

[4] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh”, Dokl. RAN, 369:5 (1999), 592–596 | MR | Zbl

[5] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse”, Dokl. RAN, 369:6 (1999), 732–735 | MR | Zbl

[6] Ilin V. A., “Volnovoe uravnenie s granichnym upravleniem na odnom kontse pri zakreplennom vtorom kontse”, Differents. ur-niya, 35:12 (1999), 1640–1659 | MR | Zbl

[7] Ilin V. A., Moiseev E. I., “Granichnoe upravlenie radialno-simmetrichnymi kolebaniyami krugloi membrany”, Dokl. RAN, 393:6 (2003), 730–734 | MR

[8] Nikitin A. A., “Granichnoe upravlenie uprugoi siloi na odnom kontse struny”, Dokl. RAN, 406:4 (2006), 458–461 | MR | Zbl

[9] Ilin V. A., Tikhomirov V. V., “Volnovoe uravnenie s kraevym upravleniem”, Differents. ur-niya, 35:1 (1999), 137–138 | Zbl

[10] Znamenskaya L. N., “Upravlenie kolebaniyami struny v klasse obobschennykh reshenii iz L2”, Differents. ur-niya, 38:5 (2002), 666–672 | MR | Zbl

[11] Borovskikh A. V., “Formuly granichnogo upravleniya neodnorodnoi strunoi I”, Differents. ur-niya, 43:1 (2007), 64–89 | MR | Zbl

[12] Borovskikh A. V., “Formuly granichnogo upravleniya neodnorodnoi strunoi II”, Differents. ur-niya, 43:5 (2007), 640–649 | MR | Zbl

[13] Ilin V. A., “O granichnom upravlenii protsessom, opisyvaemym uravneniem $k(x)[k(x)ux(x,t)]x-utt(x, t) = 0$”, Dokl. RAN, 386:2 (2002), 156–159 | MR | Zbl

[14] Andreev A. A., Leksina S. V., “Zadacha granichnogo upravleniya dlya sistemy volnovykh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-matem. nauk, 2008, no. 1(16), 5–10 | DOI | MR

[15] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR

[16] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 686 pp. | MR

[17] Grudnitskii V. G., Prokhorchuk Yu. A., “Odin priem postroeniya raznostnykh skhem s proizvolnym poryadkom approksimatsii differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 234:6 (1977), 1249–1252 | MR | Zbl

[18] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR

[19] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy (seriya "B"), Ch. 2, v. VII-1, Matem. modelirovanie v nizkotemperaturnoi plazme, Izd-vo “YaNUS-K”, M., 2009

[20] Kholodov A. S., “O postroenii raznostnykh skhem s polozhitelnoi approksimatsiei dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1476–1492 | MR | Zbl

[21] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988

[22] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sbornik, 47(89):3 (1959), 271–306 | MR | Zbl

[23] Roe P. L., “Approximate Riemann problem solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl

[24] Osher S., “Numerical solution of singular perturbation problems and hyperbolic systems of conservation laws”, North Holland Matematical Studies, 47, 1981, 179–204 | DOI | MR | Zbl

[25] Fridrichs K. O., “Symmetric hyperbolic linear differential equations”, Comm. Pure and App. Math., 7:2 (1954), 345–392 | DOI | MR

[26] Vorobev O. V., Kholodov Ya. A., “Ob odnom metode chislennogo integrirovaniya odnomernykh zadach gazovoi dinamiki”, Matem. modelirovanie, 8:1 (1996), 77–92 | MR

[27] Van Leer B., “Towards the ultimate conservative difference scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme”, J. Comput. Physics, 14:4 (1974), 361–370 | DOI | Zbl

[28] Keller H. B., Wendroff B., “On the formulation and analysis of numerical methods for time dependent transport equations”, Commun. Pure and Appl. Math., 10:4 (1957), 567–582 | DOI | MR | Zbl