To the theory of Volterra integral equations of the first kind with discontinuous kernels
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 824-839 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonclassical Volterra linear integral equation of the first kind describing the dynamics of an developing system with allowance for its age structure is considered. The connection of this equation with the classical Volterra linear integral equation of the first kind with a piecewise-smooth kernel is studied. For solving such equations, the quadrature method is applied.
@article{ZVMMF_2016_56_5_a8,
     author = {A. S. Apartsin},
     title = {To the theory of {Volterra} integral equations of the first kind with discontinuous kernels},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {824--839},
     year = {2016},
     volume = {56},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a8/}
}
TY  - JOUR
AU  - A. S. Apartsin
TI  - To the theory of Volterra integral equations of the first kind with discontinuous kernels
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 824
EP  - 839
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a8/
LA  - ru
ID  - ZVMMF_2016_56_5_a8
ER  - 
%0 Journal Article
%A A. S. Apartsin
%T To the theory of Volterra integral equations of the first kind with discontinuous kernels
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 824-839
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a8/
%G ru
%F ZVMMF_2016_56_5_a8
A. S. Apartsin. To the theory of Volterra integral equations of the first kind with discontinuous kernels. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 824-839. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a8/

[1] Magnitskii N. A., “O suschestvovanii mnogoparametricheskikh semeistv reshenii integralnogo uravneniya Volterra I roda”, Dokl. AN SSSR, 235:4 (1977), 772–774 | MR | Zbl

[2] Magnitskii N. A., “Mnogoparametricheskie semeistva reshenii integralnykh uravnenii Volterra I roda”, Dokl. AN SSSR, 240:2 (1978), 268–271 | MR | Zbl

[3] Magnitskii N. A., “Lineinye integralnye uravneniya Volterra I i III roda”, Zh. vychisl. matem. i matem. fiz., 19:4 (1979), 970–988 | MR | Zbl

[4] Magnitskii N. A., Asimptoticheskie metody analiza nestatsionarnykh upravlyaemykh sistem, Nauka, M., 1992 | MR

[5] Glushkov V. M., “Ob odnom klasse dinamicheskikh makroekonomicheskikh modelei”, Upravlyayuschie sistemy i mashiny, 1977, no. 2, 3–6

[6] Apartsin A. S., Markova E. V., Trufanov V. V., Integralnye modeli razvitiya elektroenergeticheskikh sistem, Preprint No 1, ISEM SO RAN, Irkutsk, 2002

[7] Apartsin A. S., Karaulova I. V., Markova E. V., Trufanov V. V., “Primenenie integralnykh uravnenii Volterra dlya modelirovaniya strategii tekhnicheskogo perevooruzheniya elektroenergetiki”, Elektrichestvo, 2005, no. 10, 69–75

[8] Apartsin A. S., Sidler I. V., “Primenenie neklassicheskikh uravnenii Volterra I roda dlya modelirovaniya razvivayuschikhsya sistem”, Avtomatika i telemekhanika, 2013, no. 6, 3–16

[9] Apartsin A. S., Sidler I. V., “Integralnye modeli razvitiya sistem elektroenergetiki s uchetom stareniya oborudovaniya elektrostantsii”, Elektronnoe modelirovanie, 36:4 (2014), 81–88

[10] Glushkov V. M., Ivanov V. V., Yanenko V. M., Modelirovanie razvivayuschikhsya sistem, Nauka, M., 1983 | MR

[11] Yatsenko Yu. P., Integralnye modeli sistem s upravlyaemoi pamyatyu, Nauk. Dumka, Kiev, 1991 | MR

[12] Hritonenko N., Yatcenko Yu., Applied mathematical modeling of engineering problems, Kluwer Academic Publishers, Dortrecht, 2003 | MR

[13] Apartsin A. S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999

[14] Sidorov D. N., “On parameter families of solutions to the Volterra integral equations of the first kind with piecewise smooth kernels”, Differential equations, 49:3 (2013), 209–215 | MR | Zbl

[15] Sidorov D. N., Metody analiza integralnykh dinamicheskikh modelei: teoriya i prilozheniya, Izd. IGU, Irkutsk, 2013

[16] Sidorov D., Integral dynamical models: singularities, signals and control, World Scientific Series on Nonlinear Science. Ser. A, 87, Singapore, 2014 | DOI | MR

[17] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[18] Corless R. M., Gonnet G. H., Hare D. E. G., Jeffrey D. J., “Lambert's W function in Maple”, The Maple Technical Newsletter, 1993, no. 9

[19] Corless R. M., Gonnet G. H., Hare D. E., Jeffrey D. J., Knuth D. E., “On the Lambert W function”, Advances Computational Maths., 5 (1996), 329–359 | DOI | MR | Zbl

[20] Dubinov A. E., Dubinova I. D., Saikov S. K., W-funktsiya Lamberta i ee primenenie v matematicheskikh zadachakh fiziki, Ucheb. posobie dlya vuzov, FGUP “RFYaTs-VNIIEF”, Sarov, 2006

[21] Apartsin A. S., Sidler I. V., “Chislennoe reshenie uravnenii Volterra I roda v integralnykh modelyakh razvivayuschikhsya sistem”, Obobschennye postanovki i resheniya zadach upravleniya, Sb. tr. Mezhdunarodnogo simpoziuma, ANO “Izdatelstvo fiziko-matematicheskoi literatury”, M., 2014, 21–25

[22] Apartsin A. S., Sidler I. V., “O chislennom reshenii neklassicheskikh uravnenii Volterra I roda”, Analiticheskie i chislennye metody modelirovaniya estestvenno-nauchnykh i sotsialnykh problem, Sb. statei IX Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Rossiya, Penza, 2014), 59–64

[23] Apartsin A. S., “O polilineinykh uravneniyakh Volterra I roda”, Avtomatika i telemekhanika, 2004, no. 2, 118–125

[24] Apartsin A. S., “Polilineinye integralnye uravneniya Volterra I roda: elementy teorii i chislennye metody”, Izv. Irkutskogo gos. un-ta. Seriya “Matematika”, 2007, no. 1, 13–41 | MR

[25] Apartsin A. S., “O skhodimosti chislennykh metodov resheniya bilineinogo uravneniya Volterra I roda”, Zh. vychisl. matem. i matem. fiz., 2007, no. 8, 1378–1386

[26] Apartsyn A. S., “Polynomial Volterra integral equations of the first kind and the Lambert function”, Proc. Steklov Institute of Mathematics, 280, 2013, 26–38 | DOI | MR

[27] Vilenkin N. Ya., Kombinatorika, Nauka, M., 1969

[28] Apartsyn A. S., “On an approach to modeling of developing systems”, Generalized Statements and Solutions of Control Problems, Preprints 6 International Workshop (Gelendzhik–Divnomorskoe, 2012), 32–35 (CD-Proceedings)

[29] Apartsin A. S., “On Some classes of linear volterra integral equations”, Abstract and Applied Analysis, 2014 (2014), 532409 | DOI | MR

[30] Apartsin A. S., “Neklassicheskie uravneniya Volterry I roda v integralnykh modelyakh razvivayuschikhsya sistem”, Elektronnoe modelirovanie, 36:3 (2014), 3–14

[31] Apartsin A. S., Sidler I. V., “Ob odnom ustoichivom metode chislennogo differentsirovaniya”, Vestnik Tambovskogo un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 2015, no. 5, 1010–1011

[32] Sidler I. V., Programmnoe sredstvo dlya chislennogo resheniya neklassicheskikh uravnenii Volterra I roda modifitsirovannym metodom levykh pryamougolnikov, A.s. No 2015612206, opubl. 13.02.2015