@article{ZVMMF_2016_56_5_a7,
author = {A. E. Kovtanyuk and A. Yu. Chebotarev},
title = {Nonlocal unique solvability of a steady-state problem of complex heat transfer},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {816--823},
year = {2016},
volume = {56},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a7/}
}
TY - JOUR AU - A. E. Kovtanyuk AU - A. Yu. Chebotarev TI - Nonlocal unique solvability of a steady-state problem of complex heat transfer JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 816 EP - 823 VL - 56 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a7/ LA - ru ID - ZVMMF_2016_56_5_a7 ER -
%0 Journal Article %A A. E. Kovtanyuk %A A. Yu. Chebotarev %T Nonlocal unique solvability of a steady-state problem of complex heat transfer %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 816-823 %V 56 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a7/ %G ru %F ZVMMF_2016_56_5_a7
A. E. Kovtanyuk; A. Yu. Chebotarev. Nonlocal unique solvability of a steady-state problem of complex heat transfer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 816-823. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a7/
[1] Modest M. F., Radiative heat transfer, Academic Press, 2003, 822 pp.
[2] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 191–199 | MR
[3] Andre S., Degiovanni A., “A new way of solving transient radiative-conductive heat transfer problems”, J. Heat Transfer, 120:4 (1998), 943–955 | DOI
[4] Banoczi J. M., Kelley C. T., “A fast multilevel algorithm for the solution of nonlinear systems of conductive-radiative heat transfer equations”, SIAM J. Sci. Comput., 19:1 (1998), 266–279 | DOI | MR | Zbl
[5] Thömes G., Pinnau R., Seaïd M., Götz T., Klar A., “Numerical methods and optimal control for glass cooling processes”, Trans. Theory Stat. Phys., 31:4–6 (2002), 513–529 | DOI | MR
[6] Pinnau R., Seaid M., “Simplified PN models and natural convection-radiation”, Math. in Industry, 12 (2008), 397–401 | DOI | MR | Zbl
[7] Kovtanyuk A. E., Botkin N. D., Hoffmann K.-H., “Numerical simulations of a coupled conductive-radiative heat transfer model using a modified Monte-Carlo method”, Int. J. Heat and Mass Transfer, 55 (2012), 649–654 | DOI | Zbl
[8] Kovtanyuk A. E., “Algoritmy parallelnykh vychislenii dlya zadach radiatsionno-konduktivnogo teploobmena”, Kompyuternye issledovaniya i modelirovanie, 4:3 (2012), 543–552
[9] Kovtanyuk A. E., Chebotarev A. Yu., “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362 | MR | Zbl
[10] Amosov A. A., “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differents. ur-niya, 41:1 (2005), 93–104 | MR | Zbl
[11] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modelled by the $\mathrm{SP_1}$-system”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[12] Druet P.-E., “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Analys. Real World Appl., 10:5 (2009), 2914–2936 | DOI | MR | Zbl
[13] Ducomet B., Necasova S., “Global Weak Solutions to the 1D Compressible Navier–Stokes Equations with Radiation”, Commun. Math. Analys., 8:3 (2010), 23–65 | MR | Zbl
[14] Tse O., Pinnau R., Siedow N., “Identification of temperature dependent parameters in laser-interstitial thermotherapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29 | DOI | MR
[15] Kelley C. T., “Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations”, Transport Theory Statist. Phys., 25:2 (1996), 249–260 | DOI | MR | Zbl
[16] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Solvability of $\mathrm{P}_1$ approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl
[17] Amosov A. A., “O razreshimosti odnoi zadachi teploobmena izlucheniem”, Dokl. AN SSSR, 245:6 (1979), 1341–1344 | MR
[18] Amosov A. A., “O predelnoi svyazi mezhdu dvumya zadachami teploobmena izlucheniem”, Dokl. AN SSSR, 246:5 (1979), 1080–1083 | MR
[19] Laitinen M. T., Tiihonen T., “Heat transfer in conducting, radiating and semitransparent materials”, Math. Meth. Appl. Sci., 21 (1998), 375–392 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] Laitinen M., “Asymptotic analysis of conductive-radiative heat transfer”, Asymptotic Analys., 29:3–4 (2002), 323–342 | MR | Zbl
[21] Amosov A. A., “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, J. Math. Sci., 164:3 (2010), 309–344 | DOI | MR | Zbl
[22] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “The unique solvability of a complex 3D heat transfer problem”, J. Math. Analys. Appl., 409 (2014), 808–815 | DOI | MR | Zbl
[23] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Diff. ur-niya, 50:12 (2014), 1590–1597 | DOI | Zbl
[24] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Analys. Appl., 412 (2014), 520–528 | DOI | MR | Zbl
[25] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR
[26] Mazya V. G., “O koertsitivnosti zadachi Dirikhle v oblasti s neregulyarnoi granitsei”, Izv. vuzov. Matematika, 1973, no. 4, 64–76
[27] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR
[28] Fursikov A. V., Emanuilov O. Yu., “Lokalnaya tochnaya upravlyaemost uravnenii Bussineska”, Vestn. RUDN. Ser. Matematika, 1996, no. 3(1), 177–194 | MR