@article{ZVMMF_2016_56_5_a6,
author = {O. A. Kovyrkina and V. V. Ostapenko},
title = {Monotonicity of the {CABARET} scheme approximating a hyperbolic equation with a sign-changing characteristic field},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {796--815},
year = {2016},
volume = {56},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/}
}
TY - JOUR AU - O. A. Kovyrkina AU - V. V. Ostapenko TI - Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 796 EP - 815 VL - 56 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/ LA - ru ID - ZVMMF_2016_56_5_a6 ER -
%0 Journal Article %A O. A. Kovyrkina %A V. V. Ostapenko %T Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 796-815 %V 56 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/ %G ru %F ZVMMF_2016_56_5_a6
O. A. Kovyrkina; V. V. Ostapenko. Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 796-815. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/
[1] Iserles A., “Generalized leapfrog methods”, IMA J. Numer. Anal., 6:3 (1986), 381–392 | DOI | MR | Zbl
[2] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100
[3] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy “KABARE””, Matem. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl
[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[6] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. AN, 403:4 (2005), 1–6
[7] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[8] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl
[9] Ostapenko V. V., “O silnoi monotonnosti skhemy “KABARE””, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 447–460 | MR | Zbl
[10] Karabasov S. A., Goloviznin V. M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI
[11] Karabasov S. A., Berloff P. S., Goloviznin V. M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI
[12] Goloviznin V. M., Zaitsev M. A., Karabasov S. A., Korotkin I. A., Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Izdatelstvo Mosk. un-ta, M., 2013
[13] Kovyrkina O. A., Ostapenko V. V., “O monotonnosti dvukhsloinoi po vremeni skhemy kabare”, Matem. modelirovanie, 24:9 (2012), 97–112 | MR
[14] Kovyrkina O. A., Ostapenko V. V., “O monotonnosti skhemy KABARE v mnogomernom sluchae”, Dokl. AN, 462:4 (2015), 385–390 | DOI | Zbl
[15] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sbornik, 47:3 (1959), 271–306 | MR | Zbl
[16] Ostapenko V. V., “Ob ekvivalentnykh opredeleniyakh ponyatiya konservativnosti dlya konechno-raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 29:8 (1989), 1114–1128 | MR
[17] Harten A. A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[18] Goloviznin V. M., Karabasov S. A., “Balansno-kharakteristicheskie skhemy na kusochno-postoyannykh nachalnykh dannykh. Pryzhkovyi perenos”, Matem. modelirovanie, 15:10 (2003), 71–83 | MR | Zbl