Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 796-815 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The monotonicity of the CABARET scheme approximating a hyperbolic differential equation with a sign-changing characteristic field is analyzed. Monotonicity conditions for this scheme are obtained in domains where the characteristics have a sign-definite propagation velocity and near sonic lines, on which the propagation velocity changes its sign. These properties of the CABARET scheme are illustrated by test computations.
@article{ZVMMF_2016_56_5_a6,
     author = {O. A. Kovyrkina and V. V. Ostapenko},
     title = {Monotonicity of the {CABARET} scheme approximating a hyperbolic equation with a sign-changing characteristic field},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {796--815},
     year = {2016},
     volume = {56},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - V. V. Ostapenko
TI  - Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 796
EP  - 815
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/
LA  - ru
ID  - ZVMMF_2016_56_5_a6
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A V. V. Ostapenko
%T Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 796-815
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/
%G ru
%F ZVMMF_2016_56_5_a6
O. A. Kovyrkina; V. V. Ostapenko. Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 796-815. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a6/

[1] Iserles A., “Generalized leapfrog methods”, IMA J. Numer. Anal., 6:3 (1986), 381–392 | DOI | MR | Zbl

[2] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100

[3] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy “KABARE””, Matem. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[6] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. AN, 403:4 (2005), 1–6

[7] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[8] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl

[9] Ostapenko V. V., “O silnoi monotonnosti skhemy “KABARE””, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 447–460 | MR | Zbl

[10] Karabasov S. A., Goloviznin V. M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI

[11] Karabasov S. A., Berloff P. S., Goloviznin V. M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI

[12] Goloviznin V. M., Zaitsev M. A., Karabasov S. A., Korotkin I. A., Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Izdatelstvo Mosk. un-ta, M., 2013

[13] Kovyrkina O. A., Ostapenko V. V., “O monotonnosti dvukhsloinoi po vremeni skhemy kabare”, Matem. modelirovanie, 24:9 (2012), 97–112 | MR

[14] Kovyrkina O. A., Ostapenko V. V., “O monotonnosti skhemy KABARE v mnogomernom sluchae”, Dokl. AN, 462:4 (2015), 385–390 | DOI | Zbl

[15] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sbornik, 47:3 (1959), 271–306 | MR | Zbl

[16] Ostapenko V. V., “Ob ekvivalentnykh opredeleniyakh ponyatiya konservativnosti dlya konechno-raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 29:8 (1989), 1114–1128 | MR

[17] Harten A. A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[18] Goloviznin V. M., Karabasov S. A., “Balansno-kharakteristicheskie skhemy na kusochno-postoyannykh nachalnykh dannykh. Pryzhkovyi perenos”, Matem. modelirovanie, 15:10 (2003), 71–83 | MR | Zbl