@article{ZVMMF_2016_56_5_a3,
author = {G. K. Kamenev},
title = {Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {756--767},
year = {2016},
volume = {56},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a3/}
}
TY - JOUR AU - G. K. Kamenev TI - Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 756 EP - 767 VL - 56 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a3/ LA - ru ID - ZVMMF_2016_56_5_a3 ER -
%0 Journal Article %A G. K. Kamenev %T Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 756-767 %V 56 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a3/ %G ru %F ZVMMF_2016_56_5_a3
G. K. Kamenev. Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 756-767. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a3/
[1] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of Convex Geometry, Ch. 1.10, eds. P. M. Gruber, J. M. Wills, Elsevier Sci. Publishers B. V., 1993, 321–345 | MR
[2] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Geometriya, Sovremennaya matematika. Fundamentalnye napravleniya, 22, 2007, 5–37 | Zbl
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[4] Lotov A. V., “O ponyatii obobschennykh mnozhestv dostizhimosti i ikh postroenii dlya lineinykh upravlyaemykh sistem”, Dokl. AN SSSR, 250:5 (1980), 1081–1083 | MR | Zbl
[5] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997, 239 pp.
[6] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Appl. Optimization, 89, Kluwer Academic Publishers, Boston–Dordrecht–New York–London, 2004, 310 pp. | DOI | MR | Zbl
[7] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[8] Kamenev G. K., Issledovanie iteratsionnykh metodov approksimatsii vypuklykh mnozhestv mnogogrannikami, VTs AN SSSR, M., 1986
[9] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl
[10] Efpemov R. V., Kamenev G. K., “Apriornaya otsenka asimptoticheskoi effektivnosti odnogo klassa algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR
[11] Kamenev G. K., “Effektivnye algoritmy approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 423–427 | MR | Zbl
[12] Kamenev G. K., “Skorost skhodimosti adaptivnykh metodov poliedralnoi approksimatsii vypuklykh tel na nachalnom etape”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 35–50
[13] Efremov R. V., Kamenev G. K., “Ob optimalnom poryadke rosta chisla vershin i gipergranei v klasse khausdorfovykh metodov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1018–1031 | MR | Zbl
[14] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, Izd-vo VTs RAN, M., 2007, 230 pp. | MR
[15] Böröczky K. Jr., “Polytopal approximation bounding the number of $k$-faces”, J. of Approx. Theory, 102 (2000), 263–285 | DOI | MR | Zbl
[16] Böröczky K. Jr., Fodor F., Vigh V., “Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges”, Beit. Alg. Geom., 49 (2008), 177–193 | MR | Zbl
[17] Dzholdybaeva S. M., Kamenev G. K., Eksperimentalnoe issledovanie approksimatsii vypuklykh tel mnogogrannikami, VTs AN SSSR, M., 1991, 51 pp.
[18] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Postroenie suboptimalnykh pokrytii mnogomernoi edinichnoi sfery”, Dokl. AN, 444:2 (2012), 153–155 | Zbl
[19] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Iterativnyi metod postroeniya pokrytii mnogomernoi edinichnoi sfery”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 181–194 | DOI | MR | Zbl
[20] Kamenev G. K., “Asimptoticheskie svoistva metoda utochneniya otsenok pri approksimatsii mnogomernykh sharov mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 55:10 (2015), 1647–1660 | DOI | Zbl
[21] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR
[22] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, Mir, M., 1990
[23] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988
[24] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, 221, Second Edition, Springer, New York, 2003 | DOI | MR
[25] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl
[26] Kamenev G. K., “Metod poliedralnoi approksimatsii shara s optimalnym poryadkom rosta moschnosti grannoi struktury”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1235–1248 | DOI | Zbl
[27] Kamenev G. K., Chislennoe issledovanie effektivnosti metodov poliedralnoi approksimatsii vypuklykh tel, Izd-vo VTs RAN, M., 2010, 118 pp.
[28] Seidel R., “The upper bound theorem for polytopes: an easy proof of its asymptotic version”, Comput. Geometry: Theory and Applications, 5 (1995), 115–116 | DOI | MR | Zbl
[29] Kabatyanskii G. A., Levenshtein V. I., “O granitsakh dlya upakovok na sfere i v prostranstve”, Probl. peredachi informatsii, 14:1 (1978), 3–25 | MR