Resolving sequences of operators for linear ordinary differential and difference systems of arbitrary order
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of a resolving sequence of (scalar) operators for a given differential or difference system with coefficients in some differential or difference field K. We propose an algorithm to construct, such a sequence, and give some examples of the use of this sequence as a suitable auxiliary tool for finding certain kinds of solutions of differential and difference systems of arbitrary order. Some experiments with our implementation of the algorithm are reported.
@article{ZVMMF_2016_56_5_a14,
     author = {S. A. Abramov and M. Petkov\v{s}ek and A. A. Ryabenko},
     title = {Resolving sequences of operators for linear ordinary differential and difference systems of arbitrary order},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {909},
     year = {2016},
     volume = {56},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a14/}
}
TY  - JOUR
AU  - S. A. Abramov
AU  - M. Petkovšek
AU  - A. A. Ryabenko
TI  - Resolving sequences of operators for linear ordinary differential and difference systems of arbitrary order
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 909
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a14/
LA  - en
ID  - ZVMMF_2016_56_5_a14
ER  - 
%0 Journal Article
%A S. A. Abramov
%A M. Petkovšek
%A A. A. Ryabenko
%T Resolving sequences of operators for linear ordinary differential and difference systems of arbitrary order
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 909
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a14/
%G en
%F ZVMMF_2016_56_5_a14
S. A. Abramov; M. Petkovšek; A. A. Ryabenko. Resolving sequences of operators for linear ordinary differential and difference systems of arbitrary order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a14/

[1] S. Abramov, “EG-Eliminations”, J. Differ. Equations Appl., 5 (1999), 393–433 | DOI | MR | Zbl

[2] S. Abramov, M. A. Barkatou, “Rational solutions of first-order linear difference systems”, ISSAC'98 Proceedings (1998), 124–131 | MR | Zbl

[3] S. Abramov, M. A. Bronstein, “On solutions of linear functional systems”, ISSAC'2001 Proceedings (2001), 1–6 | MR

[4] S. Abramov, M. Bronstein, D. Khmelnov, “On regular and logarithmic solutions of ordinary linear differential systems”, Proceedings of CASC'05, Lect. Notes Comput. Sci., 3718, 2005, 1–12 | DOI | MR | Zbl

[5] S. Abramov, A. Gheffar, D. Khmelnov, “Factorization of polynomials and gcd computations for finding universal denominators”, CASC'2010 Proceedings (2010), 4–18

[6] S. Abramov, A. Gheffar, D. Khmelnov, “Rational solutions of linear difference equations: Universal denominators and denominator bounds”, Program. Comput. Software, 2011, no. 2, 78–86 | DOI | MR | Zbl

[7] S. Abramov, D. Khmelnov, “Denominators of rational solutions of linear difference systems of arbitrary order”, Program. Comput. Software, 2012, no. 2, 84–91 | DOI | MR | Zbl

[8] S. Abramov, D. Khmelnov, “On singular points of solutions of linear differential systems with polynomial coefficients”, J. Math. Sci., 185:3 (2012), 347–359 | DOI | MR | Zbl

[9] S. Abramov, D. Khmelnov, “Linear differential and difference systems: $\mathrm{EG}_{\delta^-}$ and $\mathrm{EG}_{\sigma^-}$ eliminations”, Program. Comput. Software, 2013, no. 2, 91–109 | DOI | MR | Zbl

[10] S. Abramov, P. Paule, M. Petkovšek, “$q$-Hypergeometric solutions of $q$-difference equations”, Discrete Math., 180 (1998), 3–22 | DOI | MR | Zbl

[11] S. Abramov, M. Petkovšek, “Rational normal forms and minimal representation of hypergeometric terms”, J. Symb. Comput., 33 (2002), 521–543 | DOI | MR | Zbl

[12] S. Abramov, M. Petkovšek, A. Ryabenko, “Hypergeometric solutions of first-order linear difference systems with rational-function coefficients”, CASC'2015 Proceedings, Lect. Notes Comput. Sci., 9301, 2015, 1–14 | DOI | MR | Zbl

[13] G. E. Andrews, The Theory of Partitions, v. 2, Addison-Wesley, Reading, Mass., 1976 | MR | Zbl

[14] G. E. Andrews, q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conference Series, 66, Am. Math. Soc., Providence, R.I., 1986 | DOI | MR | Zbl

[15] M. A. Barkatou, A fast algorithm to compute the rational solutions of systems of linear differential equations, RR 973-M-Mars 1997, IMAG-LMC, Grenoble, 1997 | MR

[16] M. A. Barkatou, “Rational solutions of matrix difference equations: Problem of equivalence and factorization”, ISSAC'99 Proceedings, ACM, 1999, 277–282 | MR

[17] M. A. Barkatou, “An algorithm for computing a companion block diagonal form for a system of linear differential equations”, Appl. Algebra Eng. Commun. Comput., 4 (1993), 185–195 | DOI | MR | Zbl

[18] M. A. Barkatou, “An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system”, Appl. Algebra Eng. Commun. Comput., 8 (1997), 1–23 | DOI | MR | Zbl

[19] M. A. Barkatou, Hypergeometric solutions of linear difference systems, http://www.ricam.oeaw.ac.at/conferences/aca08/aadios.html

[20] A. Bostan, F. Chyzak, E. de Panafieu, “Complexity estimates for two uncoupling algorithms”, ISSAC'2013 Proceedings (2013), 85–92 | MR

[21] M. Bronstein, M. Petkovšek, “An introduction to pseudo-linear algebra”, Theor. Comput. Sci., 157 (1996), 3–33 | DOI | MR | Zbl

[22] T. Cluzeau, M. van Hoeij, “A modular algorithm to compute the exponential solutions of a linear differential operator”, J. Symb. Comput., 38 (2004), 1043–1076 | DOI | MR

[23] T. Cluzeau, M. van Hoeij, “Computing hypergeometric solutions of linear difference equations”, Appl. Algebra Eng. Commun. Comput., 17 (2006), 83–115 | DOI | MR | Zbl

[24] M. van Hoeij, “Rational solutions of linear difference equations”, ISSAC'98 Proceedings, ACM, 1998, 120–123 | MR | Zbl

[25] M. van Hoeij, “Finite singularities and hypergeometric solutions of linear recurrence equations”, J. Pure Appl. Algebra, 139 (1999), 109–131 | DOI | MR | Zbl

[26] D. Khmelnov, “Search for polynomial solutions of linear functional systems by means of induced recurrences”, Program. Comput. Software, 30:2 (2004), 61–67 | DOI | MR | Zbl

[27] M. Petkovšek, “Hypergeometric solutions of linear recurrences with polynomial coefficients”, J. Symb. Comput., 14 (1992), 243–264 | DOI | MR | Zbl

[28] A. Storjohann, “High-order lifting and integrality certification”, J. Symb. Comput., 36 (2003), 613–648 | DOI | MR | Zbl

[29] Maple online help, http://www.maplesoft.com/support/help/