Effective averaging of stochastic radiative models based on Monte Carlo simulation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 896-908 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the Monte Carlo simulation and probabilistic analysis, stochastic radiative models are effectively averaged; that is, deterministic models that reproduce the mean probabilities of particle passage through a stochastic medium are constructed. For this purpose, special algorithms for the double randomization and conjugate walk methods are developed. For the numerical simulation of stochastic media, homogeneous isotropic Voronoi and Poisson mosaic models are used. The parameters of the averaged models are estimated based on the properties of the exponential distribution and the renewal theory.
@article{ZVMMF_2016_56_5_a13,
     author = {A. Yu. Ambos and G. A. Mikhailov},
     title = {Effective averaging of stochastic radiative models based on {Monte} {Carlo} simulation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {896--908},
     year = {2016},
     volume = {56},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a13/}
}
TY  - JOUR
AU  - A. Yu. Ambos
AU  - G. A. Mikhailov
TI  - Effective averaging of stochastic radiative models based on Monte Carlo simulation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 896
EP  - 908
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a13/
LA  - ru
ID  - ZVMMF_2016_56_5_a13
ER  - 
%0 Journal Article
%A A. Yu. Ambos
%A G. A. Mikhailov
%T Effective averaging of stochastic radiative models based on Monte Carlo simulation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 896-908
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a13/
%G ru
%F ZVMMF_2016_56_5_a13
A. Yu. Ambos; G. A. Mikhailov. Effective averaging of stochastic radiative models based on Monte Carlo simulation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 896-908. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a13/

[1] Mikhailov G. A., “Asimptoticheskie otsenki srednei veroyatnosti prokhozhdeniya izlucheniya cherez eksponentsialno korrelirovannuyu stokhasticheskuyu sredu”, Izv. RAN. Ser. FAO, 48:6 (2012), 691–697

[2] Serra J., Image analysis and mathematical morphology, Acad. Press inc., London, 1982 | MR | Zbl

[3] Switzer P., “A random set process in the plane with a Markovian property”, Ann. Math. Statist., 36 (1965), 1859–1863 | DOI | MR | Zbl

[4] Gilbert E. N., “Random subdivisions of space into crystals”, Ann. Math. Statist., 33 (1962), 958–972 | DOI | MR | Zbl

[5] Ambos A. Yu., Mikhailov G. A., “Statistical modelling of the exponentially correlated multivariate random field”, Rus. J. Num. Anal. Math. Model., 26:3 (2011), 213–232 | MR

[6] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[7] Coleman W. A., “Mathematical verification of a certain monte carlo sampling technique and applications of the technique to radiation transport problems”, Nucl. Sci. and Engng., 32:1 (1968), 76–81 | DOI

[8] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A. i dr., Metody Monte-Karlo v atmosfernoi optike, ed. G. I. Marchuk, Nauka, Novosibirsk, 1976

[9] Springer-Verlag, 1980 | MR

[10] Feigelson E. M., Krasnokutskaya L. D., Potoki solnechnogo izlucheniya i oblaka, Gidrometeoizdat, Leningrad, 1978

[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967

[12] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965