Discrete spectrum of cranked quantum and elastic waveguides
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 879-895 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectrum of quantum and elastic waveguides in the form of a cranked strip is studied. In the Dirichlet spectral problem for the Laplacian (quantum waveguide), in addition to well-known results on the existence of isolated eigenvalues for any angle $\alpha$ at the corner, a priori lower bounds are established for these eigenvalues. It is explained why methods developed in the scalar case are frequently inapplicable to vector problems. For an elastic isotropic waveguide with a clamped boundary, the discrete spectrum is proved to be nonempty only for small or close-to-$\pi$ angles $\alpha$. The asymptotics of some eigenvalues are constructed. Elastic waveguides of other shapes are discussed.
@article{ZVMMF_2016_56_5_a12,
     author = {S. A. Nazarov},
     title = {Discrete spectrum of cranked quantum and elastic waveguides},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {879--895},
     year = {2016},
     volume = {56},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a12/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Discrete spectrum of cranked quantum and elastic waveguides
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 879
EP  - 895
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a12/
LA  - ru
ID  - ZVMMF_2016_56_5_a12
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Discrete spectrum of cranked quantum and elastic waveguides
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 879-895
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a12/
%G ru
%F ZVMMF_2016_56_5_a12
S. A. Nazarov. Discrete spectrum of cranked quantum and elastic waveguides. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 879-895. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a12/

[1] Exner P., “A quantum pipette”, J. Phys. A, 28 (1995), 5323–6330 | DOI | MR

[2] Nazarov S. A., “Asimptotika chastot uprugikh voln, zakhvachennykh maloi treschinoi v tsilindricheskom volnovode”, Mekhanika tverdogo tela, 2010, no. 6, 112–122

[3] Avishai Y., Bessis D., Giraud B. G., Mantica G., “Quantum bound states in open geometries”, Physical Review B, 44:15 (1991), 8028–8034 | DOI

[4] Nazarov S. A., “Diskretnyi spektr kolenchatykh, razvetvlyayuschikhsya i periodicheskikh volnovodov”, Algebra i analiz, 23:2 (2011), 206–247

[5] Nazarov S. A., Shanin A. V., “Trapped modes in angular joints of 2D waveguides”, Applicable Analysis, 93:3 (2014), 572–582 | DOI | MR | Zbl

[6] Nazarov S. A., “Asimptotika sobstvennogo chisla zadachi Dirikhle v kolenchatom volnovode”, Vestnik SPbGU. Ser. 1, 2011, no. 3(5), 29–35

[7] Dauge M., Raymond N., “Plane waveguides with corners in the small angle limit”, J. Math. Phys., 53 (2012) | DOI | MR | Zbl

[8] Nazarov S. A., “Lokalizatsiya uprugikh kolebanii v krestoobraznykh ploskikh ortotropnykh volnovodakh”, Dokl. AN, 458:1 (2014), 42–46 | DOI | MR

[9] Rellich F., “Über das asymptotische Verhalten der Losungen von $\Delta u+\lambda u=0$ in unendlichen Gebiete”, Jahresber. Dtsch. Math.-Ver., 53:1 (1943), 57–65 | MR | Zbl

[10] Cardone G., Durante T., Nazarov S. A., “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends”, SIAM J. Math. Anal., 42:6 (2010), 2581–2609 | DOI | MR | Zbl

[11] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980

[12] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[13] Freitas P., “Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi”, J. of Functional Analysis, 251 (2007), 376–398 | DOI | MR | Zbl

[14] Nazarov S. A., “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sibirsk. matem. zh., 54:3 (2013), 655–672 | MR | Zbl

[15] Nazarov S. A., “Asimptotika sobstvennykh znachenii zadachi Dirikhle na skoshennom $\mathcal{J}$-obraznom volnovode”, Zh. vychisl. matem. i matem. fiz., 54:5 (2014), 793–814 | DOI | Zbl

[16] Vorovich I. I., Babeshko V. A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979 | MR

[17] Nazarov S. A., “Neotrazhayuschie iskazheniya izotropnoi polosy, zazhatoi mezhdu absolyutno zhestkimi shtampami”, Zh. vychisl. matem. i matem. fiz., 53:10 (2013), 1698–1708 | DOI | MR | Zbl

[18] Nazarov S. A., “Uprugie volny, zakhvachennye odnorodnym anizotropnym polutsilindrom”, Matem. sbornik, 204:11 (2013), 99–130 | DOI | MR | Zbl

[19] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528

[20] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981 | MR

[21] Duclos P., Exner P., “Curvature-induced bound sttes in quantum waveguides in two and three dimensions”, Review Math. Phys., 7 (1995), 73–102 | DOI | MR | Zbl

[22] Kamotskii I. V., Nazarov S. A., “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. AN, 368:6 (1999), 771–773 | Zbl

[23] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tp. Moskovsk. matem. ob-va, 16, 1963, 219–292

[24] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 70 (1977), 29–60

[25] Mazya V. R., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82

[26] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl

[27] Van Daik M. D., Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967

[28] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[29] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zh., 51:5 (2010), 1086–1101 | MR | Zbl

[30] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969 | MR

[31] Friedlander L., Solomyak M., “On the spectrum of the Diriclilet Laplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl

[32] Borisov D., Freitas P., “Singular asymptotic expansions for Diriclilet eigenvalues and eigenfunctions on thin planar domains”, Annales de l'institut Henri Poincare (C) Analvse non-lincaire, 26:2 (2009), 547–560 | DOI | MR | Zbl

[33] Borisov D., Freitas P., “Asymptotics of Dirichlet eigeiwalues and eigenfunctions of the Laplacian on thin domains in $\mathbb{R}^d$”, J. Functional Analysis, 258:3 (2010), 893–912 | DOI | MR | Zbl

[34] Nazarov S. A., “Spektralnye svoistva tonkogo sloya s dvoyakoperiodicheskim semeistvom istonchenii”, Teoreticheskaya i matematicheskaya fizika, 174:3 (2013), 398–415 | DOI | Zbl

[35] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[36] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teoreticheskaya i matematicheskaya fizika, 167:2 (2011), 239–262 | DOI

[37] Mazja W. G., Nazarov S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singularär gestörten Gebieten, v. 1, Akademie-Verlag, Berlin, 1991 | MR