Discrete spectrum of cranked quantum and elastic waveguides
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 879-895
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectrum of quantum and elastic waveguides in the form of a cranked strip is studied. In the Dirichlet spectral problem for the Laplacian (quantum waveguide), in addition to well-known results on the existence of isolated eigenvalues for any angle $\alpha$ at the corner, a priori lower bounds are established for these eigenvalues. It is explained why methods developed in the scalar case are frequently inapplicable to vector problems. For an elastic isotropic waveguide with a clamped boundary, the discrete spectrum is proved to be nonempty only for small or close-to-$\pi$ angles $\alpha$. The asymptotics of some eigenvalues are constructed. Elastic waveguides of other shapes are discussed.
@article{ZVMMF_2016_56_5_a12,
author = {S. A. Nazarov},
title = {Discrete spectrum of cranked quantum and elastic waveguides},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {879--895},
publisher = {mathdoc},
volume = {56},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a12/}
}
TY - JOUR AU - S. A. Nazarov TI - Discrete spectrum of cranked quantum and elastic waveguides JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 879 EP - 895 VL - 56 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a12/ LA - ru ID - ZVMMF_2016_56_5_a12 ER -
S. A. Nazarov. Discrete spectrum of cranked quantum and elastic waveguides. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 879-895. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a12/