Problem with nonequilibrium boundary conditions in the kinetic theory of gases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 869-878
Voir la notice de l'article provenant de la source Math-Net.Ru
The Boltzmann kinetic equation is considered in a new formulation with nonequilibrium distribution functions on free boundaries, which makes it possible to simulate nonequilibrium superand subsonic flows. Transport processes for such flows are analyzed. The possibility of anomalous transport is determined, in which case the heat flux, temperature gradient, and the corresponding components of the nonequilibrium stress tensor and the velocity gradient have the same sign.
@article{ZVMMF_2016_56_5_a11,
author = {V. V. Aristov and S. A. Zabelok and M. A. Fedosov and A. A. Frolova},
title = {Problem with nonequilibrium boundary conditions in the kinetic theory of gases},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {869--878},
publisher = {mathdoc},
volume = {56},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/}
}
TY - JOUR AU - V. V. Aristov AU - S. A. Zabelok AU - M. A. Fedosov AU - A. A. Frolova TI - Problem with nonequilibrium boundary conditions in the kinetic theory of gases JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 869 EP - 878 VL - 56 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/ LA - ru ID - ZVMMF_2016_56_5_a11 ER -
%0 Journal Article %A V. V. Aristov %A S. A. Zabelok %A M. A. Fedosov %A A. A. Frolova %T Problem with nonequilibrium boundary conditions in the kinetic theory of gases %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 869-878 %V 56 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/ %G ru %F ZVMMF_2016_56_5_a11
V. V. Aristov; S. A. Zabelok; M. A. Fedosov; A. A. Frolova. Problem with nonequilibrium boundary conditions in the kinetic theory of gases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 869-878. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/