Problem with nonequilibrium boundary conditions in the kinetic theory of gases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 869-878 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Boltzmann kinetic equation is considered in a new formulation with nonequilibrium distribution functions on free boundaries, which makes it possible to simulate nonequilibrium superand subsonic flows. Transport processes for such flows are analyzed. The possibility of anomalous transport is determined, in which case the heat flux, temperature gradient, and the corresponding components of the nonequilibrium stress tensor and the velocity gradient have the same sign.
@article{ZVMMF_2016_56_5_a11,
     author = {V. V. Aristov and S. A. Zabelok and M. A. Fedosov and A. A. Frolova},
     title = {Problem with nonequilibrium boundary conditions in the kinetic theory of gases},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {869--878},
     year = {2016},
     volume = {56},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/}
}
TY  - JOUR
AU  - V. V. Aristov
AU  - S. A. Zabelok
AU  - M. A. Fedosov
AU  - A. A. Frolova
TI  - Problem with nonequilibrium boundary conditions in the kinetic theory of gases
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 869
EP  - 878
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/
LA  - ru
ID  - ZVMMF_2016_56_5_a11
ER  - 
%0 Journal Article
%A V. V. Aristov
%A S. A. Zabelok
%A M. A. Fedosov
%A A. A. Frolova
%T Problem with nonequilibrium boundary conditions in the kinetic theory of gases
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 869-878
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/
%G ru
%F ZVMMF_2016_56_5_a11
V. V. Aristov; S. A. Zabelok; M. A. Fedosov; A. A. Frolova. Problem with nonequilibrium boundary conditions in the kinetic theory of gases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 869-878. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a11/

[1] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[2] Chercignani C., The Boltzmann Equation and its Applications, Springer, Berlin, 1988 | MR

[3] Aristov V. V., “A steady state, supersonic, flow solution of the Boltzmann equation”, Phys. Letters A, 250 (1998), 354–359 | DOI

[4] Aristov V. V., Direct Methods of Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Kluwer Publishers, Dordrecht, 2001 | MR | Zbl

[5] Aristov V. V., Zabelok S. A., Frolova A. A., “Neravnovesnye protsessy perenosa v zadachakh o neodnorodnoi relaksatsii”, Matem. modelirovanie, 21:12 (2009), 59–75

[6] Aristov V. V., Frolova A. A., Zabelok S. A., “A new effect of the nongradient transport in relaxation zones”, EPL Journal, 88 (2009), 30012 | DOI

[7] Aristov V. V., Frolova A. A., Zabelok S. A., “Supersonic Flows with Nontraditional Transport Described by Kinetic Methods”, Commun. Comput. Phys., 11:4 (2012), 1334–1346 | DOI | MR

[8] Aristov V. V., Frolova A. A., Zabelok S. A., “Nonequilibrium kinetic processes with chemical reactions and complex structures in open systems”, EPL Journal, 106 (2014), 20002 | DOI

[9] Aristov V., Frolova A., Zabelok S., “Complex nonequilibrium flows with slow and fast chemical reactions for simulation processes in open systems”, J. Mechan. Sci. Techn., 29:5 (2015), 1–9 | MR

[10] Aristov V. V., Panyashkin M. V., “Issledovanie relaksatsionnykh prostranstvennykh protsessov s pomoschyu resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 131–141 | MR | Zbl

[11] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[12] Schrader D., Kuhr S., Alt W., Müller M., Gomer V., Meschede D., “An optical conveyor belt for single neutral atoms”, Applied Physics B, 73:8 (2001), 819–824 | DOI

[13] Barker P. F., Shneider M. N., “Optical microlinear accelerator for molecules and atoms”, Physical Review A, 64:03 (2001), 033408 | DOI

[14] Fulton R., Bishop A. I., Schneider M. N., Barker P. F., “Controlling the motion of cold molecules with deep periodic optical potentials”, Nature Phys., 2 (2006), 465–468 | DOI