Detailed simulation of the pulsating detonation wave in the shock-attached frame
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 856-868 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the numerical investigation of the stability of propagation of pulsating gas detonation waves. For various values of the mixture activation energy, detailed propagation patterns of the stable, weakly unstable, irregular, and strongly unstable detonation are obtained. The mathematical model is based on the Euler system of equations and the one-stage model of chemical reaction kinetics. The distinctive feature of the paper is the use of a specially developed computational algorithm of the second approximation order for simulating detonation wave in the shock-attached frame. In distinction from shock capturing schemes, the statement used in the paper is free of computational artifacts caused by the numerical smearing of the leading wave front. The key point of the computational algorithm is the solution of the equation for the evolution of the leading wave velocity using the second-order grid-characteristic method. The regimes of the pulsating detonation wave propagation thus obtained qualitatively match the computational data obtained in other studies and their numerical quality is superior when compared with known analytical solutions due to the use of a highly accurate computational algorithm.
@article{ZVMMF_2016_56_5_a10,
     author = {A. I. Lopato and P. S. Utkin},
     title = {Detailed simulation of the pulsating detonation wave in the shock-attached frame},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {856--868},
     year = {2016},
     volume = {56},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a10/}
}
TY  - JOUR
AU  - A. I. Lopato
AU  - P. S. Utkin
TI  - Detailed simulation of the pulsating detonation wave in the shock-attached frame
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 856
EP  - 868
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a10/
LA  - ru
ID  - ZVMMF_2016_56_5_a10
ER  - 
%0 Journal Article
%A A. I. Lopato
%A P. S. Utkin
%T Detailed simulation of the pulsating detonation wave in the shock-attached frame
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 856-868
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a10/
%G ru
%F ZVMMF_2016_56_5_a10
A. I. Lopato; P. S. Utkin. Detailed simulation of the pulsating detonation wave in the shock-attached frame. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 856-868. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a10/

[1] Vasilev A. A., Mitrofanov V. V., Topchiyan M. E., “Detonatsionnye volny v gazakh”, Fizika goreniya i vzryva, 1987, no. 5, 109–130

[2] Levin V. A., Markov V. V., Zhuravskaya T. A., Osinkin S. F., “Nelineinye volnovye protsessy pri initsiirovanii i rasprostranenii gazovoi detonatsii”, Tr. MIAN, 251, 2005, 200–214 | Zbl

[3] Cole L. K., Karagozian A. R., Cambier J.-L., “Stability of flame-shock coupling in detonation waves: 1D dynamics”, Combustion Sci. Technology, 184 (2012), 1502–1525 | DOI

[4] Faria L. M., Kasimov A. R., Rosales R. R., “Study of a model equation in detonation theory”, SIAM J. Applied Math., 74:2 (2014), 547–570 | DOI | MR | Zbl

[5] Lopato A. I., Utkin P. S., “Issledovanie pulsiruyuschei volny detonatsii metodami skvoznogo scheta i v sisteme koordinat, svyazannoi s lidiruyuschei volnoi”, Gorenie i vzryv, 8:1 (2015), 145–150 | MR | Zbl

[6] Sedov L. I., Korobeinikov V. P., Markov V. V., “Teoriya rasprostraneniya vzryvnykh voln”, Tr. MIAN, 175, 1986, 178–214

[7] He L., Lee J. H. S., “The dynamical limit of one-dimensional detonations”, Phys. Fluids, 7 (1995), 1151–1158 | DOI | Zbl

[8] Henrick A. K., Aslam T. D., Powers J. M., “Simulations of pulsating one-dimensional detonations with true fifth order accuracy”, J. Comput. Phys., 213 (2006), 311–329 | DOI | MR | Zbl

[9] Kasimov A. R., Stewart D. S., “On the dynamics of the self-sustained one-dimensional detonations: A numerical study in the shock-attached frame”, Phys. Fluids, 16:10 (2004), 3566–3578 | DOI

[10] Aslam T. D., Powers J. M., “The dynamics of unsteady detonation in ozone”, Proc. 47th AIAA Aerospace Sci. Meeting and Exhibit (5–8 January 2009, Orlando, Florida), 2009-0632

[11] Romick C. M., Aslam T. D., Powers J. M., “The dynamics of unsteady detonation with diffusion”, Proc. 49th AIAA Aerospace Sci. Meeting including the New Horizonts Forum and Aerospace Exposition (4–7 January 2011, Orlando, Florida), 2011-799

[12] Lee H. I., Stewart D. S., “Calculation of linear detonation instability: one-dimensional instability of plane detonation”, J. Fluid Mechan., 216 (1990), 103–132 | DOI | Zbl

[13] Daimon Y., Matsuo A., “Detailed features of one-dimensional detonations”, Phys. Fluids, 15:1 (2003), 112–122 | DOI | MR

[14] Lee J. H. S., The detonation phenomenon, Cambridge University Press, 2008

[15] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy, v. 2, Nauka, M., 2008, 220–235

[16] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[17] Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Rept. No 97-65, 1997 | MR

[18] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77 (1988), 439–471 | DOI | MR | Zbl

[19] Semenov I. V., Utkin P. S., Akhmedyanov I. F., Menshov I. S., “Primenenie mnogoprotsessornoi vychislitelnoi tekhniki dlya resheniya zadach vnutrennei ballistiki”, Vychisl. metody i programmirovanie, 12 (2011), 183–193

[20] Lopato A. I., Utkin P. S., “Matematicheskoe modelirovanie pulsiruyuschei volny detonatsii s ispolzovaniem ENO-skhem razlichnykh poryadkov approksimatsii”, Kompyuternye issledovaniya i modelirovanie, 6:5 (2014), 643–653