On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 730-741
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The work is devoted to exact estimates of the convergence rate of Fourier series in the trigonometric system in the space of square summable $2\pi$-periodic functions with the Euclidean norm on certain classes of functions characterized by the generalized modulus of continuity. Some $N$-widths of these classes are calculated, and the residual term of one quadrature formula over equally spaced nodes for a definite integral connected with the issues under consideration is found.
            
            
            
          
        
      @article{ZVMMF_2016_56_5_a1,
     author = {M. K. Kerimov and E. V. Selimkhanov},
     title = {On exact estimates of the convergence rate of {Fourier} series for functions of one variable in the space $L_2[-\pi,\pi]$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {730--741},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/}
}
                      
                      
                    TY - JOUR AU - M. K. Kerimov AU - E. V. Selimkhanov TI - On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 730 EP - 741 VL - 56 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/ LA - ru ID - ZVMMF_2016_56_5_a1 ER -
%0 Journal Article %A M. K. Kerimov %A E. V. Selimkhanov %T On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 730-741 %V 56 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/ %G ru %F ZVMMF_2016_56_5_a1
M. K. Kerimov; E. V. Selimkhanov. On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 730-741. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/
