On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 730-741

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to exact estimates of the convergence rate of Fourier series in the trigonometric system in the space of square summable $2\pi$-periodic functions with the Euclidean norm on certain classes of functions characterized by the generalized modulus of continuity. Some $N$-widths of these classes are calculated, and the residual term of one quadrature formula over equally spaced nodes for a definite integral connected with the issues under consideration is found.
@article{ZVMMF_2016_56_5_a1,
     author = {M. K. Kerimov and E. V. Selimkhanov},
     title = {On exact estimates of the convergence rate of {Fourier} series for functions of one variable in the space $L_2[-\pi,\pi]$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {730--741},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/}
}
TY  - JOUR
AU  - M. K. Kerimov
AU  - E. V. Selimkhanov
TI  - On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 730
EP  - 741
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/
LA  - ru
ID  - ZVMMF_2016_56_5_a1
ER  - 
%0 Journal Article
%A M. K. Kerimov
%A E. V. Selimkhanov
%T On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 730-741
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/
%G ru
%F ZVMMF_2016_56_5_a1
M. K. Kerimov; E. V. Selimkhanov. On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 730-741. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/