On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 730-741 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to exact estimates of the convergence rate of Fourier series in the trigonometric system in the space of square summable $2\pi$-periodic functions with the Euclidean norm on certain classes of functions characterized by the generalized modulus of continuity. Some $N$-widths of these classes are calculated, and the residual term of one quadrature formula over equally spaced nodes for a definite integral connected with the issues under consideration is found.
@article{ZVMMF_2016_56_5_a1,
     author = {M. K. Kerimov and E. V. Selimkhanov},
     title = {On exact estimates of the convergence rate of {Fourier} series for functions of one variable in the space $L_2[-\pi,\pi]$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {730--741},
     year = {2016},
     volume = {56},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/}
}
TY  - JOUR
AU  - M. K. Kerimov
AU  - E. V. Selimkhanov
TI  - On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 730
EP  - 741
VL  - 56
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/
LA  - ru
ID  - ZVMMF_2016_56_5_a1
ER  - 
%0 Journal Article
%A M. K. Kerimov
%A E. V. Selimkhanov
%T On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 730-741
%V 56
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/
%G ru
%F ZVMMF_2016_56_5_a1
M. K. Kerimov; E. V. Selimkhanov. On exact estimates of the convergence rate of Fourier series for functions of one variable in the space $L_2[-\pi,\pi]$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 5, pp. 730-741. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_5_a1/

[1] Rafalson S. Z., “Nailuchshee priblizhenie funktsii v metrikakh algebraicheskimi mnogochlenami i koeffitsienty Fure po ortogonalnym mnogochlenam”, Vestn. LGU. Ser. mekhan. i matem., 1969, no. 7, 68–79 | MR

[2] Abilova F. V., “O nailuchshem priblizhenii funktsii algebraicheskimi mnogochlenami v srednem”, Dokl. Bolgarskoi AN, 46:12 (1993), 9–11 | MR

[3] Abilov V. A., Abilova F. V., “O nailuchshem priblizhenii funktsii algebraicheskimi mnogochlenami v srednem”, Izv. vuzov. Matematika, 1997, no. 3, 40–43 | MR

[4] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure po ortogonalnym mnogochlenam v prostranstve $L_2((a, b)p(x))$”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 966–980 | MR | Zbl

[5] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure–Besselya”, Zh. vychisl. matem. i matem. fiz., 55:6 (2015), 917–927 | DOI | MR | Zbl

[6] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure po klassicheskim mnogochlenam”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1109–1117 | DOI | Zbl

[7] Abilov V. A., Abilova F. V., “Ob odnoi kvadraturnoi formule”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 451–458 | MR | Zbl

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[9] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[10] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1968

[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976

[12] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[13] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[14] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[15] Abilov V. A., Abilova F. V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii v prostranstve $L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl