Study of discontinuities in solutions of the Prandtl-Reuss elastoplasticity equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 650-663
Voir la notice de l'article provenant de la source Math-Net.Ru
Relations across shock waves propagating through Prandtl–Reuss elastoplastic materials with hardening are investigated in detail. It is assumed that the normal and tangent velocities to the front change across shock waves. In addition to conservation laws, shock waves must satisfy additional relations implied by their structure. The structure of shock waves is studied assuming that the principal dissipative mechanism is determined by stress relaxation, whose rate is bounded. The relations across shock waves are subject to a qualitative analysis, which is illustrated by numerical results obtained for quantities across shocks.
@article{ZVMMF_2016_56_4_a9,
author = {A. G. Kulikovskii and A. P. Chugainova},
title = {Study of discontinuities in solutions of the {Prandtl-Reuss} elastoplasticity equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {650--663},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a9/}
}
TY - JOUR AU - A. G. Kulikovskii AU - A. P. Chugainova TI - Study of discontinuities in solutions of the Prandtl-Reuss elastoplasticity equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 650 EP - 663 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a9/ LA - ru ID - ZVMMF_2016_56_4_a9 ER -
%0 Journal Article %A A. G. Kulikovskii %A A. P. Chugainova %T Study of discontinuities in solutions of the Prandtl-Reuss elastoplasticity equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 650-663 %V 56 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a9/ %G ru %F ZVMMF_2016_56_4_a9
A. G. Kulikovskii; A. P. Chugainova. Study of discontinuities in solutions of the Prandtl-Reuss elastoplasticity equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 650-663. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a9/