@article{ZVMMF_2016_56_4_a7,
author = {A. A. Kashirin and S. I. Smagin and M. Taltykina},
title = {Mosaic-skeleton method as applied to the numerical solution of three-dimensional {Dirichlet} problems for the {Helmholtz} equation in integral form},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {625--638},
year = {2016},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/}
}
TY - JOUR AU - A. A. Kashirin AU - S. I. Smagin AU - M. Taltykina TI - Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 625 EP - 638 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/ LA - ru ID - ZVMMF_2016_56_4_a7 ER -
%0 Journal Article %A A. A. Kashirin %A S. I. Smagin %A M. Taltykina %T Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 625-638 %V 56 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/ %G ru %F ZVMMF_2016_56_4_a7
A. A. Kashirin; S. I. Smagin; M. Taltykina. Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 625-638. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/
[1] Kashirin A. A., Smagin S. I., “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1492–1505 | MR | Zbl
[2] Smagin S. I., “Chislennoe reshenie integralnogo uravneniya I roda so slaboi osobennostyu dlya plotnosti potentsiala prostogo sloya”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1663–1673 | MR
[3] Kashirin A. A., Smagin S. I., “On numerical solution of integral equations for three-dimensional diffraction problems”, MTPP 2010, LNCS, 6083, Springer, Berlin, 2010, 11–19
[4] Kashirin A. A., “Ob uslovno-korrektnykh integralnykh uravneniyakh i chislennom reshenii statsionarnykh zadach difraktsii akusticheskikh voln”, Vestnik TOGU, 2012, no. 3, 33–40
[5] Beale J. T., “A grid-based boundary integral method for elliptic problems in three dimensions”, SIAM J. Numer. Analys., 42:2 (2004), 599–620 | DOI | MR | Zbl
[6] Saad Y., Schultz M., “GMRES: a general minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci Stat. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl
[7] Rokhlin V., “Rapid solution of integral equations of classic potential theory”, J. Comput. Phys., 60:2 (1985), 187–207 | DOI | MR | Zbl
[8] Hackbush W., Novak Z. P., “On the fast matrix multiplication in the boundary element method by panel clustering”, Numer. Math., 54:4 (1989), 463–492 | DOI | MR
[9] Beylkin G., Coifman R., Rokhlin V., “Fast wavelet transform and numerical algorithms I”, Comm. Pure Appl. Math., 44:2 (1991), 141–183 | DOI | MR | Zbl
[10] Brandt A., Lubrecht A. A., “Multilevel matrix multiplication and fast solution of integral equations”, J. Comput. Phys., 90:2 (1990), 348–370 | DOI | MR | Zbl
[11] Tyrtyshnikov E. E., “Mosaic-skeleton approximations”, Calcolo, 33:1–2 (1996), 47–57 | DOI | MR | Zbl
[12] Tyrtyshnikov E. E., “Metody bystrogo umnozheniya i reshenie uravnenii”, Matrichnye metody i vychisleniya, IVM RAN, M., 1999, 4–41
[13] Tyrtyshnikov E. E., Matrix approximations and cost-effective matrix-vector multiplication, IVM RAN, M., 1993
[14] Savostyanov D. V., Bystraya polilineinaya approksimatsiya matrits i integralnye uravneniya, Dis. ... kand. fiz.-matem. nauk, M., 2006
[15] Goreinov S. A., Zamarashkin N. L., Tyrtyshnikov E. E., “Psevdoskeletnye approksimatsii matrits”, Dokl. RAN, 343:2 (1995), 151–152 | MR
[16] Goreinov S. A., Tyrtyshnikov E. E., Zamarashkin N. L., “A theory of pseudo-skeleton approximations”, Linear Algebra Appl., 261 (1997), 1–21 | DOI | MR | Zbl
[17] Goreinov S. A., “Mozaichno-skeletonnye approksimatsii matrits, porozhdennykh asimptoticheski gladkimi i ostsillyatsionnymi yadrami”, Matrichnye metody i vychisleniya, IVM RAN, M., 1999, 42–76
[18] Tyrtyshnikov E. E., “Incomplete cross approximations in the mosaic-skeleton method”, Computing, 64:4 (2000), 367–380 | DOI | MR | Zbl
[19] Aparinov A. A., “O primenenii metoda mozaichno-skeletonnykh approksimatsii pri vychislenii polya skorostei v dvumernykh vikhrevykh techeniyakh v bezgranichnoi oblasti”, Metody diskretnykh osobennostei v zadachakh matem. fiz., Trudy mezhdunar. shkol-seminarov, v. 6, Izd-vo GOU VPO “Orlovskii gos. un-t”, Orel, 2008, 6–12
[20] Oseledets I. V., Savostyanov D. V., Stavtsev S. L., “Primenenie nelineinykh metodov approksimatsii dlya bystrogo resheniya zadachi rasprostraneniya zvuka v melkom more”, Metody i tekhnologii resheniya bolshikh zadach, IVM RAN, M., 2004, 171–192
[21] Aparinov A. A., Setukha A. V., “O primenenii metoda mozaichno-skeletonnykh approksimatsii pri modelirovanii trekhmernykh vikhrevykh techenii vikhrevymi otrezkami”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 937–948 | MR | Zbl
[22] Stavtsev S. L., Tyrtyshnikov E. E., “Application of Mosaic-Skeleton Approximations for Solving EFIE”, PIERS proc., M., 2009, 1752–1755
[23] Savostyanov D. V., Stavtsev S. L., Tyrtyshnikov E. E., “Ob ispolzovanii mozaichno-skeletnykh approksimatsii pri reshenii gipersingulyarnykh integralnykh uravnenii”, Chislennye metody, parallelnye vychisleniya i informatsionnye tekhnologii, Izd-vo Moskovskogo un-ta, M., 2008, 225–244
[24] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[25] Bebendorf M., “Approximation of boundary element matrices”, Numer. Math., 86:4 (2000), 565–589 | DOI | MR | Zbl
[26] Meyer C. D., Matrix analysis and applied linear algebra, SIAM, Philadelphia, PA, 2000 | MR | Zbl