Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 625-638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interior and exterior three-dimensional Dirichlet problems for the Helmholtz equation are solved numerically. They are formulated as equivalent boundary Fredholm integral equations of the first kind and are approximated by systems of linear algebraic equations, which are then solved numerically by applying an iteration method. The mosaic-skeleton method is used to speed up the solution procedure.
@article{ZVMMF_2016_56_4_a7,
     author = {A. A. Kashirin and S. I. Smagin and M. Taltykina},
     title = {Mosaic-skeleton method as applied to the numerical solution of three-dimensional {Dirichlet} problems for the {Helmholtz} equation in integral form},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {625--638},
     year = {2016},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/}
}
TY  - JOUR
AU  - A. A. Kashirin
AU  - S. I. Smagin
AU  - M. Taltykina
TI  - Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 625
EP  - 638
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/
LA  - ru
ID  - ZVMMF_2016_56_4_a7
ER  - 
%0 Journal Article
%A A. A. Kashirin
%A S. I. Smagin
%A M. Taltykina
%T Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 625-638
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/
%G ru
%F ZVMMF_2016_56_4_a7
A. A. Kashirin; S. I. Smagin; M. Taltykina. Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 625-638. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a7/

[1] Kashirin A. A., Smagin S. I., “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1492–1505 | MR | Zbl

[2] Smagin S. I., “Chislennoe reshenie integralnogo uravneniya I roda so slaboi osobennostyu dlya plotnosti potentsiala prostogo sloya”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1663–1673 | MR

[3] Kashirin A. A., Smagin S. I., “On numerical solution of integral equations for three-dimensional diffraction problems”, MTPP 2010, LNCS, 6083, Springer, Berlin, 2010, 11–19

[4] Kashirin A. A., “Ob uslovno-korrektnykh integralnykh uravneniyakh i chislennom reshenii statsionarnykh zadach difraktsii akusticheskikh voln”, Vestnik TOGU, 2012, no. 3, 33–40

[5] Beale J. T., “A grid-based boundary integral method for elliptic problems in three dimensions”, SIAM J. Numer. Analys., 42:2 (2004), 599–620 | DOI | MR | Zbl

[6] Saad Y., Schultz M., “GMRES: a general minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci Stat. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl

[7] Rokhlin V., “Rapid solution of integral equations of classic potential theory”, J. Comput. Phys., 60:2 (1985), 187–207 | DOI | MR | Zbl

[8] Hackbush W., Novak Z. P., “On the fast matrix multiplication in the boundary element method by panel clustering”, Numer. Math., 54:4 (1989), 463–492 | DOI | MR

[9] Beylkin G., Coifman R., Rokhlin V., “Fast wavelet transform and numerical algorithms I”, Comm. Pure Appl. Math., 44:2 (1991), 141–183 | DOI | MR | Zbl

[10] Brandt A., Lubrecht A. A., “Multilevel matrix multiplication and fast solution of integral equations”, J. Comput. Phys., 90:2 (1990), 348–370 | DOI | MR | Zbl

[11] Tyrtyshnikov E. E., “Mosaic-skeleton approximations”, Calcolo, 33:1–2 (1996), 47–57 | DOI | MR | Zbl

[12] Tyrtyshnikov E. E., “Metody bystrogo umnozheniya i reshenie uravnenii”, Matrichnye metody i vychisleniya, IVM RAN, M., 1999, 4–41

[13] Tyrtyshnikov E. E., Matrix approximations and cost-effective matrix-vector multiplication, IVM RAN, M., 1993

[14] Savostyanov D. V., Bystraya polilineinaya approksimatsiya matrits i integralnye uravneniya, Dis. ... kand. fiz.-matem. nauk, M., 2006

[15] Goreinov S. A., Zamarashkin N. L., Tyrtyshnikov E. E., “Psevdoskeletnye approksimatsii matrits”, Dokl. RAN, 343:2 (1995), 151–152 | MR

[16] Goreinov S. A., Tyrtyshnikov E. E., Zamarashkin N. L., “A theory of pseudo-skeleton approximations”, Linear Algebra Appl., 261 (1997), 1–21 | DOI | MR | Zbl

[17] Goreinov S. A., “Mozaichno-skeletonnye approksimatsii matrits, porozhdennykh asimptoticheski gladkimi i ostsillyatsionnymi yadrami”, Matrichnye metody i vychisleniya, IVM RAN, M., 1999, 42–76

[18] Tyrtyshnikov E. E., “Incomplete cross approximations in the mosaic-skeleton method”, Computing, 64:4 (2000), 367–380 | DOI | MR | Zbl

[19] Aparinov A. A., “O primenenii metoda mozaichno-skeletonnykh approksimatsii pri vychislenii polya skorostei v dvumernykh vikhrevykh techeniyakh v bezgranichnoi oblasti”, Metody diskretnykh osobennostei v zadachakh matem. fiz., Trudy mezhdunar. shkol-seminarov, v. 6, Izd-vo GOU VPO “Orlovskii gos. un-t”, Orel, 2008, 6–12

[20] Oseledets I. V., Savostyanov D. V., Stavtsev S. L., “Primenenie nelineinykh metodov approksimatsii dlya bystrogo resheniya zadachi rasprostraneniya zvuka v melkom more”, Metody i tekhnologii resheniya bolshikh zadach, IVM RAN, M., 2004, 171–192

[21] Aparinov A. A., Setukha A. V., “O primenenii metoda mozaichno-skeletonnykh approksimatsii pri modelirovanii trekhmernykh vikhrevykh techenii vikhrevymi otrezkami”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 937–948 | MR | Zbl

[22] Stavtsev S. L., Tyrtyshnikov E. E., “Application of Mosaic-Skeleton Approximations for Solving EFIE”, PIERS proc., M., 2009, 1752–1755

[23] Savostyanov D. V., Stavtsev S. L., Tyrtyshnikov E. E., “Ob ispolzovanii mozaichno-skeletnykh approksimatsii pri reshenii gipersingulyarnykh integralnykh uravnenii”, Chislennye metody, parallelnye vychisleniya i informatsionnye tekhnologii, Izd-vo Moskovskogo un-ta, M., 2008, 225–244

[24] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[25] Bebendorf M., “Approximation of boundary element matrices”, Numer. Math., 86:4 (2000), 565–589 | DOI | MR | Zbl

[26] Meyer C. D., Matrix analysis and applied linear algebra, SIAM, Philadelphia, PA, 2000 | MR | Zbl