Alternating triangular schemes for convection-diffusion problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 587-604 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicit-implicit approximations are used to approximate nonstationary convection-diffusion equations in time. In unconditionally stable two-level schemes, diffusion is taken from the upper time level, while convection, from the lower layer. In the case of three time levels, the resulting explicit-implicit schemes are second-order accurate in time. Explicit alternating triangular (asymmetric) schemes are used for parabolic problems with a self-adjoint elliptic operator. These schemes are unconditionally stable, but conditionally convergent. Three-level modifications of alternating triangular schemes with better approximating properties were proposed earlier. In this work, two- and three-level alternating triangular schemes for solving boundary value problems for nonstationary convection-diffusion equations are constructed. Numerical results are presented for a two-dimensional test problem on triangular meshes, such as Delaunay triangulations and Voronoi diagrams.
@article{ZVMMF_2016_56_4_a5,
     author = {P. N. Vabishchevich and P. E. Zakharov},
     title = {Alternating triangular schemes for convection-diffusion problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {587--604},
     year = {2016},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a5/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - P. E. Zakharov
TI  - Alternating triangular schemes for convection-diffusion problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 587
EP  - 604
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a5/
LA  - ru
ID  - ZVMMF_2016_56_4_a5
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A P. E. Zakharov
%T Alternating triangular schemes for convection-diffusion problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 587-604
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a5/
%G ru
%F ZVMMF_2016_56_4_a5
P. N. Vabishchevich; P. E. Zakharov. Alternating triangular schemes for convection-diffusion problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 587-604. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a5/

[1] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR

[2] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge University Press, 2000 | MR

[3] Hundsdorfer W. H., Verwer J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, Berlin, 2003 | MR | Zbl

[4] Morton K. W., Kellogg R. B., Numerical Solution of Convection-Diffusion Problems, Chapman Hall, London, 1996 | MR | Zbl

[5] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, URSS, M., 1999

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[7] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973

[8] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference Schemes with Operator Factors, Kluwer Acad. Publis., Dordrecht, 2002 | MR | Zbl

[9] Afanas'eva N. M., Churbanov A. G., Vabishchevich P. N., “Unconditionally Monotone Schemes for Unsteady Convection-Diffusion Problems”, Comput. Meth. Applied Math., 13:2 (2013), 185–205 | MR

[10] Vabishchevich P. N., Samarskii A. A., “Explicit-implicit difference schemes for convection-diffusion problems”, Recent Advances in Numerical Methods and Applications II, World Sci., 1999, 74–86 | MR | Zbl

[11] Saulev V. K., Integrirovanie uravnenii parabolicheskogo tipa metodom setok, Fizmatgiz, M., 1960 | MR

[12] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 580–585 | MR

[13] Vabischevich P. N., “Trekhsloinye skhemy poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 54:6 (2014), 942–952 | DOI | Zbl

[14] Vabishchevich P. N., “Finite-difference approximation of mathematical physics problems on irregular grids”, Comput. Meth. Appl. Math., 5:3 (2005), 294–330 | DOI | MR | Zbl

[15] Vabischevich P. N., Samarskii A. A., “Raznostnye skhemy dlya zadach konvektsii-diffuzii na neregulyarnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 726–739 | MR | Zbl

[16] Marchuk G. I., “Splitting and alternating direction methods”, Handbook of Numerical Analysis, v. I, North-Holland, 1990, 197–462 | MR | Zbl

[17] Vabishchevich P. N., Additive Operator-Difference Schemes. Splitting Schemes, de Gruyter, Berlin–Boston, 2014 | MR | Zbl

[18] Vabishchevich P. N., “Explicit schemes for parabolic and hyperbolic equations”, Appl. Math. Comput., 250 (2015), 424–431 | MR | Zbl