Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 572-586
Voir la notice de l'article provenant de la source Math-Net.Ru
A family of difference schemes for the fractional-order diffusion equation with variable coefficients is considered. By the method of energetic inequalities, a priori estimates are obtained for solutions of finite-difference problems, which imply the stability and convergence of the difference schemes considered. The validity of the results is confirmed by numerical calculations for test examples.
@article{ZVMMF_2016_56_4_a4,
author = {A. A. Alikhanov},
title = {Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {572--586},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/}
}
TY - JOUR AU - A. A. Alikhanov TI - Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 572 EP - 586 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/ LA - ru ID - ZVMMF_2016_56_4_a4 ER -
%0 Journal Article %A A. A. Alikhanov %T Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 572-586 %V 56 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/ %G ru %F ZVMMF_2016_56_4_a4
A. A. Alikhanov. Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 572-586. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/