Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 572-586 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of difference schemes for the fractional-order diffusion equation with variable coefficients is considered. By the method of energetic inequalities, a priori estimates are obtained for solutions of finite-difference problems, which imply the stability and convergence of the difference schemes considered. The validity of the results is confirmed by numerical calculations for test examples.
@article{ZVMMF_2016_56_4_a4,
     author = {A. A. Alikhanov},
     title = {Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {572--586},
     year = {2016},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/}
}
TY  - JOUR
AU  - A. A. Alikhanov
TI  - Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 572
EP  - 586
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/
LA  - ru
ID  - ZVMMF_2016_56_4_a4
ER  - 
%0 Journal Article
%A A. A. Alikhanov
%T Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 572-586
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/
%G ru
%F ZVMMF_2016_56_4_a4
A. A. Alikhanov. Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 572-586. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a4/

[1] Nigmatullin P. P., “Osobennosti relaksatsii sistemy s “ostatochnoi” pamyatyu”, Fiz. tverdogo tela, 27:5 (1985), 1583–1585

[2] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884

[3] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Nedebaevskaya relaksatsiya i diffuziya v fraktalnom prostranstve”, Dokl. AN, 361:6 (1998), 755–758 | Zbl

[4] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Avtovolnovye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. AN, 369:3 (1999), 332–333 | Zbl

[5] Shogenov V. Kh., Akhkubekov A. A., Akhkubekov R. A., “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izv VUZOV. Severo-Kavkazskii region. Estestvennye nauki, 2004, no. 1, 46–50

[6] Goloviznin V. M., Kisilev V. P., Korotkin I. A., Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003

[7] Goloviznin V. M., Kisilev V. P., Korotkin I. A., Yurkov Yu. I., “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130

[8] Goloviznin V. M., Korotkin I. A., “Metody chislennogo resheniya nekotorykh odnomernykh uravnenii s drobnymi proizvodnymi”, Differents. ur-niya, 42:7 (2006), 907–913 | MR | Zbl

[9] Goloviznin V. M., Kondratenko P. S., Matveev L. V. i dr., Anomalnaya diffuziya radionuklidov v silnoneodnorodnykh geologicheskikh formatsiyakh, In-t problem bezopasnogo razvitiya atomnoi energetiki RAN, Nauka, M., 2010, 342 pp.

[10] Sun Z. Z., Wu X. N., “A fully discrete difference scheme for a diffusion-wave system”, Appl. Numer. Math., 56 (2006), 193–209 | DOI | MR | Zbl

[11] Delic A., Jovanovic B. S., “Numerical approximation of an interface problem for fractional in time diffusion equation”, Appl. Math. Comput., 229 (2014), 467–479 | MR

[12] Shkhanukov-Lafishev M. Kh., Taukenova F. I., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881 | MR

[13] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | MR | Zbl

[14] Bazzaev A. K., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 50:7 (2010), 1200–1208 | MR | Zbl

[15] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. ur-niya, 46:5 (2010), 658–664 | MR | Zbl

[16] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219 (2012), 3938–3946 | MR | Zbl

[17] Alikhanov A. A., “Ob ustoichivosti i skhodimosti nelokalnykh raznostnykh skhem”, Differents. ur-niya, 46:7 (2010), 942–954 | MR | Zbl

[18] Alikhanov A. A., “Ustoichivost i skhodimost nelokalnykh raznostnykh skhem, approksimiruyuschikh dvukhparametricheskuyu nelokalnuyu kraevuyu zadachu”, Differents. ur-niya, 49:7 (2013), 826–836 | Zbl

[19] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR