Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 551-571 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The natural Hamiltonian systems (systems with separable Hamiltonians) are considered. The variety of explicit three-stage symplectic schemes is described. A classification of the third-order accurate schemes is given. All fourth-order schemes are found (there are seven of them). It is proved that there are no fifth-order schemes. The schemes with improved properties, such as invertibility and optimality with respect to the phase error, are listed. Numerical results that demonstrate the properties of these schemes are presented, and their comparative analysis with respect to the accuracy-efficiency criterion is given. The disbalance of total energy is used as the accuracy criterion.
@article{ZVMMF_2016_56_4_a3,
     author = {V. N. Sofronov and V. E. Shemarulin},
     title = {Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural {Hamiltonian} systems: {A} comparative study of the accuracy of high-order schemes on molecular dynamics problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {551--571},
     year = {2016},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/}
}
TY  - JOUR
AU  - V. N. Sofronov
AU  - V. E. Shemarulin
TI  - Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 551
EP  - 571
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/
LA  - ru
ID  - ZVMMF_2016_56_4_a3
ER  - 
%0 Journal Article
%A V. N. Sofronov
%A V. E. Shemarulin
%T Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 551-571
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/
%G ru
%F ZVMMF_2016_56_4_a3
V. N. Sofronov; V. E. Shemarulin. Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 551-571. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR

[2] Suris Yu. B., “O sokhranenii simplekticheskoi struktury pri chislennom reshenii gamiltonovykh sistem”, Chislennoe reshenie obyknovennykh differentsialnykh uravnenii, IPM AN SSSR, M., 1988, 148–160 | MR

[3] Sanz-Serna J. M., “Runge–Kutta schemes for Hamiltonian system”, BIT, 28 (1988), 877–883 | DOI | MR | Zbl

[4] Elenin G. G., Shlyakhov P. I., “Geometricheskaya struktura prostranstva parametrov trekhstadiinykh simplekticheskikh metodov Runge–Kutty”, Matem. modelirovanie, 23:5 (2011), 16–34 | MR

[5] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[6] Alshin A. B., Alshina E. A., Kalitkin N. N., Koryagina A. B., “Skhemy Rozenbroka s kompleksnymi koeffitsientami dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1392–1414 | MR

[7] Verlet L., “Computer “experiments” on classical fluids. Thermodynamical properties of Lennard–Jones molecules”, Phys. Rev., 159:1 (1967), 98–103 | DOI

[8] Suris Yu. B., “O kanonichnosti otobrazhenii, porozhdaemykh metodami tipa Runge–Kutty pri integrirovanii sistem $\ddot{x}=-\partial U/\partial x$”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 202–211 | MR

[9] Alshina E. A., Zaks E. M., Kalitkin N. N., “Optimalnye skhemy Runge–Kutty s pervogo po shestoi poryadok tochnosti”, Zh. vychisl. matem. i matem. fiz., 47:3 (2008), 418–429 | MR

[10] Arzhantsev I. V., Bazisy Grëbnera i sistemy algebraicheskikh uravnenii, MTsNMO, M., 2003

[11] http://www.maplesoft.com

[12] Sofronov V. N., Mokina K. S., Shemarulin V. E., “Raznostnye skhemy molekulyarnoi dinamiki. 1: Sravnitelnyi analiz tochnosti, ustoichivosti i ekonomichnosti”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fizich. protsessov, 2011, no. 2, 18–32

[13] Forest E., Ruth R. D., “Fourth-order symplectic integration”, Physica D, 43 (1990), 105–117 | DOI | MR | Zbl

[14] Candy J., Rozmus W., “A symplectic integration algorithm for separable Hamiltonian function”, J. Comput. Phys., 92 (1991), 230–256 | DOI | MR | Zbl

[15] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[16] Norman G. E., Stegailov V. V., “Stokhasticheskaya teoriya metoda klassicheskoi molekulyarnoi dinamiki”, Matem. modelirovanie, 24:6 (2012), 3–44 | MR | Zbl

[17] Rougier E., Munjiza A., John N. W. M., “Numerical comparision of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics”, Internat. J. for numer. methods in engineering, 61 (2004), 856–879 | DOI | Zbl

[18] Zigel K., Mozer Yu., Lektsii po nebesnoi mekhanike, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001

[19] Shemarulin V. E., Sofronov V. N., Mokina K. S., “Raznostnye skhemy molekulyarnoi dinamiki. 2: Sistema dvumernykh testov”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fizich. protsessov, 2011, no. 3, 3–15

[20] Lopez-Marcos M. A., Sanz-Serna J. M., Skeel R. D., Are Gauss-Legendre methods useful in molecular dynamics?, J. Comput. and Appl. Math., 67 (1996), 173–179 | DOI | MR | Zbl

[21] Sanz-Serna J. M., Calvo M. P., Numerical Hamiltonian problems, Chapman and Hall, London, 1984

[22] Norman G. E., Timofeev A. V., “Primenenie ponyatiya “temperatura” dlya opisaniya dinamiki pylevykh chastits v plazme gazovogo razryada”, Dokl. AN, 446:4 (2012), 393–397 | MR | Zbl

[23] Bond S. D., Leimkuhler B. J., “Molecular dynamics and the accuracy of numerically computed averages”, Acta Numerica, 5 (2007), 1–65 | DOI | MR