@article{ZVMMF_2016_56_4_a3,
author = {V. N. Sofronov and V. E. Shemarulin},
title = {Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural {Hamiltonian} systems: {A} comparative study of the accuracy of high-order schemes on molecular dynamics problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {551--571},
year = {2016},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/}
}
TY - JOUR AU - V. N. Sofronov AU - V. E. Shemarulin TI - Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 551 EP - 571 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/ LA - ru ID - ZVMMF_2016_56_4_a3 ER -
%0 Journal Article %A V. N. Sofronov %A V. E. Shemarulin %T Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 551-571 %V 56 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/ %G ru %F ZVMMF_2016_56_4_a3
V. N. Sofronov; V. E. Shemarulin. Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 551-571. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a3/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR
[2] Suris Yu. B., “O sokhranenii simplekticheskoi struktury pri chislennom reshenii gamiltonovykh sistem”, Chislennoe reshenie obyknovennykh differentsialnykh uravnenii, IPM AN SSSR, M., 1988, 148–160 | MR
[3] Sanz-Serna J. M., “Runge–Kutta schemes for Hamiltonian system”, BIT, 28 (1988), 877–883 | DOI | MR | Zbl
[4] Elenin G. G., Shlyakhov P. I., “Geometricheskaya struktura prostranstva parametrov trekhstadiinykh simplekticheskikh metodov Runge–Kutty”, Matem. modelirovanie, 23:5 (2011), 16–34 | MR
[5] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl
[6] Alshin A. B., Alshina E. A., Kalitkin N. N., Koryagina A. B., “Skhemy Rozenbroka s kompleksnymi koeffitsientami dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1392–1414 | MR
[7] Verlet L., “Computer “experiments” on classical fluids. Thermodynamical properties of Lennard–Jones molecules”, Phys. Rev., 159:1 (1967), 98–103 | DOI
[8] Suris Yu. B., “O kanonichnosti otobrazhenii, porozhdaemykh metodami tipa Runge–Kutty pri integrirovanii sistem $\ddot{x}=-\partial U/\partial x$”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 202–211 | MR
[9] Alshina E. A., Zaks E. M., Kalitkin N. N., “Optimalnye skhemy Runge–Kutty s pervogo po shestoi poryadok tochnosti”, Zh. vychisl. matem. i matem. fiz., 47:3 (2008), 418–429 | MR
[10] Arzhantsev I. V., Bazisy Grëbnera i sistemy algebraicheskikh uravnenii, MTsNMO, M., 2003
[12] Sofronov V. N., Mokina K. S., Shemarulin V. E., “Raznostnye skhemy molekulyarnoi dinamiki. 1: Sravnitelnyi analiz tochnosti, ustoichivosti i ekonomichnosti”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fizich. protsessov, 2011, no. 2, 18–32
[13] Forest E., Ruth R. D., “Fourth-order symplectic integration”, Physica D, 43 (1990), 105–117 | DOI | MR | Zbl
[14] Candy J., Rozmus W., “A symplectic integration algorithm for separable Hamiltonian function”, J. Comput. Phys., 92 (1991), 230–256 | DOI | MR | Zbl
[15] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR
[16] Norman G. E., Stegailov V. V., “Stokhasticheskaya teoriya metoda klassicheskoi molekulyarnoi dinamiki”, Matem. modelirovanie, 24:6 (2012), 3–44 | MR | Zbl
[17] Rougier E., Munjiza A., John N. W. M., “Numerical comparision of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics”, Internat. J. for numer. methods in engineering, 61 (2004), 856–879 | DOI | Zbl
[18] Zigel K., Mozer Yu., Lektsii po nebesnoi mekhanike, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001
[19] Shemarulin V. E., Sofronov V. N., Mokina K. S., “Raznostnye skhemy molekulyarnoi dinamiki. 2: Sistema dvumernykh testov”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fizich. protsessov, 2011, no. 3, 3–15
[20] Lopez-Marcos M. A., Sanz-Serna J. M., Skeel R. D., Are Gauss-Legendre methods useful in molecular dynamics?, J. Comput. and Appl. Math., 67 (1996), 173–179 | DOI | MR | Zbl
[21] Sanz-Serna J. M., Calvo M. P., Numerical Hamiltonian problems, Chapman and Hall, London, 1984
[22] Norman G. E., Timofeev A. V., “Primenenie ponyatiya “temperatura” dlya opisaniya dinamiki pylevykh chastits v plazme gazovogo razryada”, Dokl. AN, 446:4 (2012), 393–397 | MR | Zbl
[23] Bond S. D., Leimkuhler B. J., “Molecular dynamics and the accuracy of numerically computed averages”, Acta Numerica, 5 (2007), 1–65 | DOI | MR