Stability of best approximation of a convex body by a ball of fixed radius
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 535-550 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The finite-dimensional problem of the best approximation (in the Hausdorff metric) of a convex body by a ball of arbitrary norm with a fixed radius is considered. The stability and sensitivity of the solution to errors in specifying the convex body to be approximated and the unit ball of the used norm are analyzed. It is shown that the solution of the problem is stable with respect to the functional and, if the solution is unique, the center of the best approximation ball is stable as well. The sensitivity of the solution to the error with respect to the functional is estimated (regardless of the radius of the ball). A sensitivity estimate for the center of the best approximation ball is obtained under the additional assumption that the estimated body and the ball of the used norm are strongly convex. This estimate is related to the range of radii of the approximating ball.
@article{ZVMMF_2016_56_4_a2,
     author = {S. I. Dudov and M. A. Osiptsev},
     title = {Stability of best approximation of a convex body by a ball of fixed radius},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {535--550},
     year = {2016},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a2/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - M. A. Osiptsev
TI  - Stability of best approximation of a convex body by a ball of fixed radius
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 535
EP  - 550
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a2/
LA  - ru
ID  - ZVMMF_2016_56_4_a2
ER  - 
%0 Journal Article
%A S. I. Dudov
%A M. A. Osiptsev
%T Stability of best approximation of a convex body by a ball of fixed radius
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 535-550
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a2/
%G ru
%F ZVMMF_2016_56_4_a2
S. I. Dudov; M. A. Osiptsev. Stability of best approximation of a convex body by a ball of fixed radius. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 535-550. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a2/

[1] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[2] Blyashke V., Krug i shar, Nauka, M., 1967 | MR

[3] Tot L. F., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, M., 1958

[4] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: metod ellipsoidov, Nauka, M., 1988 | MR

[5] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997 | MR | Zbl

[6] Abramov O. V., Zdor V. V., Suponya A. A., Dopuski i nominaly sistem upravleniya, Nauka, M., 1976

[7] Dudov S. I., “O zadache fiksirovannykh dopuskov”, Zh. vychisl. matem. i matem. fiz., 37:8 (1997), 937–944 | MR | Zbl

[8] Gruber P. M., “Approximation of convex bodies”, Convexity and its applications, eds. P. M. Gruber, J. M. Wills, Birkhauser, Basel, 1983, 131–162 | DOI | MR

[9] Nikolskii M. S., Silin D. B., “O nailuchshem priblizhenii vypuklogo kompakta elementami addiala”, Tr. MIRAN im. V. A. Steklova, 211, 1995, 338–354 | MR | Zbl

[10] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovr. matematika. Fundam. napravleniya, 22, 2007, 5–37 | Zbl

[11] Gruber P. M., “Approximation by convex polytopes”, Polytopes: Abstract, Convex and Computational (Inst. Scarborough, Ontario Canada, Aug. 20–Sept. 3, 1993), Proc. NATO Adv. Study: Math. Phys. Sci., 440, Kluwer Academic Publishers, Dordrecht, 1994, 173–203 | MR | Zbl

[12] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | DOI | MR | Zbl

[13] Dudov S. I., Zlatorunskaya I. V., “Best approximation of a compact set by a ball in an arbitraty norm”, Adv. Math. Res., 2 (2003), 81–114 | MR | Zbl

[14] Dudov S. I., “Vzaimosvyaz nekotorykh zadach po otsenke vypuklogo kompakta sharom”, Matem. sb., 198:1 (2007), 43–58 | DOI | MR

[15] Dudov S. I., Osiptsev M. A., “O podkhode k priblizhennomu resheniyu zadachi nailuchshego priblizheniya vypuklogo tela sharom fiksirovannogo radiusa”, Izd. Carat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:3 (2014), 268–272

[16] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[17] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[18] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[19] Dudov S. I., “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zametki, 61:4 (1997), 530–542 | DOI | MR | Zbl

[20] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[21] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1986 | MR

[22] Osiptsev M. A., Dudov S. I., “O ravnomernoi otsenke vypuklogo kompakta sharom fiksirovannogo radiusa”, Mat. 17-oi Mezhd. Sarat. zimnei shkoly po teorii funktsii, Izd. “Nauchnaya kniga”, Saratov, 2014, 201–203 | Zbl

[23] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[24] Dudov S. I., Dudova A. S., “Ob ustoichivosti resheniya zadach o vneshnei i vnutrennei otsenke vypuklogo kompakta sharom”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1657–1671 | MR

[25] Dudov S. I., “Vnutrennyaya otsenka vypuklogo mnozhestva telom normy”, Zh. vychisl. matem. i matem. fiz., 36:5 (1996), 153–159 | MR | Zbl