Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 685-693 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear wave processes described by a fifth-order generalized KdV equation derived from the Fermi–Pasta–Ulam (FPU) model are considered. It is shown that, in contrast to the KdV equation, which demonstrates the recurrence of initial states and explains the FPU paradox, the fifthorder equation fails to pass the Painlevé test, is not integrable, and does not exhibit the recurrence of the initial state. The results of this paper show that the FPU paradox occurs only at an initial stage of a numerical experiment, which is explained by the existence of KdV solitons only on a bounded initial time interval.
@article{ZVMMF_2016_56_4_a12,
     author = {A. K. Volkov and N. A. Kudryashov},
     title = {Nonlinear waves described by a fifth-order equation derived from the {Fermi{\textendash}Pasta{\textendash}Ulam} system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {685--693},
     year = {2016},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/}
}
TY  - JOUR
AU  - A. K. Volkov
AU  - N. A. Kudryashov
TI  - Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 685
EP  - 693
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/
LA  - ru
ID  - ZVMMF_2016_56_4_a12
ER  - 
%0 Journal Article
%A A. K. Volkov
%A N. A. Kudryashov
%T Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 685-693
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/
%G ru
%F ZVMMF_2016_56_4_a12
A. K. Volkov; N. A. Kudryashov. Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 685-693. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/

[1] Fermi E., Pasta J., Ulam S., Studies of nonlinear problems, Los Alamos Rept LA-1940, 1955, 978

[2] Ulam S., Adventures of a Mathematician, Charles Scribner's Sons, New York, 1983 | MR

[3] Zabusky N. J., Kruskal M. D., “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett., 15 (1965), 240 | DOI | Zbl

[4] Kudryashov N. A., “Exact soliton solutions of the generalized evolution equation of wave dynamics”, J. Applied Math. and Mech., 52 (1988), 361–365 | DOI | MR

[5] Kudryashov N. A., “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Lett. A, 147 (1990), 287–291 | DOI | MR

[6] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear partial differential equations, Second Edition, Chapman and Hall/CRC, Boca Raton, 2011 | MR

[7] Kudryashov N. A., “One method for finding exact solutions of nonlinear differential equations”, Communicat. Nonlinear Sci. Numer. Simul., 17 (2012), 2248–2253 | DOI | MR | Zbl

[8] Kudryashov N. A., “Analytical solutions of the Lorenz system”, Regular and Chaotic Dynamics, 20 (2015), 123–133 | DOI | MR | Zbl

[9] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dlya parabolicheskikh sistem s silnoi nelineinostyu i maloi diffuziei”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1482–1491 | MR | Zbl

[10] Kaschenko S. A., “Postroenie normalizovannykh sistem dlya issledovaniya dinamiki gibridnykh i giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 564–575 | MR | Zbl

[11] Chugainova A. P., Shargatov V. A., “Ustoichivost nestatsionarnykh reshenii obobschennogo uravneniya Kortevega–de Vriza–Byurgersa”, Zh. vychisl. matem. i matem. fiz., 55:2 (2015), 253–266 | DOI | Zbl

[12] Porubov A. V., Velarde M. G., “Dispersive-dissipative solitons in nonlinear solids”, Wave Motion, 31 (2000), 197–207 | DOI | MR | Zbl

[13] Vabischevich P. N., “Trekhsloinye skhemy poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 54:6 (2014), 942–952 | DOI | Zbl

[14] Dautov R. Z., Fedotov E. M., “Abstraktnaya teoriya HDG-skhem dlya kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 54:3 (2014), 463–480 | DOI | MR | Zbl

[15] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge university press, London, 1991 | MR | Zbl

[16] Gardner C. S. et al., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095 | DOI

[17] Hirota R., “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27 (1971), 1192 | DOI | Zbl

[18] Kudryashov N. A., “Refinement of the Korteweg–de Vries equation from the Fermi–Pasta–Ulam model”, Phys. Lett. A, 2015 (to appear) | DOI | MR

[19] Kordeweg D. J., de Vries G., “On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave”, Phil. Mag., 39 (1895), 422–443 | DOI

[20] Cox S. M., Matthews P. C., “Exponential time differencing for stiff systems”, J. of Comput. Phys., 176 (2002), 430–455 | DOI | MR | Zbl

[21] Kassam A. K., Trefethen L. N., “Fourth-order time-stepping for stiff PDEs”, SIAM J. on Sci. Comput., 26 (2005), 1214–1233 | DOI | MR | Zbl

[22] Kudryashov N. A., Ryabov P. N., Sinelshchikov D. I., “Nonlinear waves in media with fifth order dispersion”, Phys. Lett. A, 375 (2011), 2051–2055 | DOI | MR | Zbl