@article{ZVMMF_2016_56_4_a12,
author = {A. K. Volkov and N. A. Kudryashov},
title = {Nonlinear waves described by a fifth-order equation derived from the {Fermi{\textendash}Pasta{\textendash}Ulam} system},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {685--693},
year = {2016},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/}
}
TY - JOUR AU - A. K. Volkov AU - N. A. Kudryashov TI - Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 685 EP - 693 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/ LA - ru ID - ZVMMF_2016_56_4_a12 ER -
%0 Journal Article %A A. K. Volkov %A N. A. Kudryashov %T Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 685-693 %V 56 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/ %G ru %F ZVMMF_2016_56_4_a12
A. K. Volkov; N. A. Kudryashov. Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 685-693. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a12/
[1] Fermi E., Pasta J., Ulam S., Studies of nonlinear problems, Los Alamos Rept LA-1940, 1955, 978
[2] Ulam S., Adventures of a Mathematician, Charles Scribner's Sons, New York, 1983 | MR
[3] Zabusky N. J., Kruskal M. D., “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett., 15 (1965), 240 | DOI | Zbl
[4] Kudryashov N. A., “Exact soliton solutions of the generalized evolution equation of wave dynamics”, J. Applied Math. and Mech., 52 (1988), 361–365 | DOI | MR
[5] Kudryashov N. A., “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Lett. A, 147 (1990), 287–291 | DOI | MR
[6] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear partial differential equations, Second Edition, Chapman and Hall/CRC, Boca Raton, 2011 | MR
[7] Kudryashov N. A., “One method for finding exact solutions of nonlinear differential equations”, Communicat. Nonlinear Sci. Numer. Simul., 17 (2012), 2248–2253 | DOI | MR | Zbl
[8] Kudryashov N. A., “Analytical solutions of the Lorenz system”, Regular and Chaotic Dynamics, 20 (2015), 123–133 | DOI | MR | Zbl
[9] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dlya parabolicheskikh sistem s silnoi nelineinostyu i maloi diffuziei”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1482–1491 | MR | Zbl
[10] Kaschenko S. A., “Postroenie normalizovannykh sistem dlya issledovaniya dinamiki gibridnykh i giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 564–575 | MR | Zbl
[11] Chugainova A. P., Shargatov V. A., “Ustoichivost nestatsionarnykh reshenii obobschennogo uravneniya Kortevega–de Vriza–Byurgersa”, Zh. vychisl. matem. i matem. fiz., 55:2 (2015), 253–266 | DOI | Zbl
[12] Porubov A. V., Velarde M. G., “Dispersive-dissipative solitons in nonlinear solids”, Wave Motion, 31 (2000), 197–207 | DOI | MR | Zbl
[13] Vabischevich P. N., “Trekhsloinye skhemy poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 54:6 (2014), 942–952 | DOI | Zbl
[14] Dautov R. Z., Fedotov E. M., “Abstraktnaya teoriya HDG-skhem dlya kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 54:3 (2014), 463–480 | DOI | MR | Zbl
[15] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge university press, London, 1991 | MR | Zbl
[16] Gardner C. S. et al., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095 | DOI
[17] Hirota R., “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27 (1971), 1192 | DOI | Zbl
[18] Kudryashov N. A., “Refinement of the Korteweg–de Vries equation from the Fermi–Pasta–Ulam model”, Phys. Lett. A, 2015 (to appear) | DOI | MR
[19] Kordeweg D. J., de Vries G., “On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave”, Phil. Mag., 39 (1895), 422–443 | DOI
[20] Cox S. M., Matthews P. C., “Exponential time differencing for stiff systems”, J. of Comput. Phys., 176 (2002), 430–455 | DOI | MR | Zbl
[21] Kassam A. K., Trefethen L. N., “Fourth-order time-stepping for stiff PDEs”, SIAM J. on Sci. Comput., 26 (2005), 1214–1233 | DOI | MR | Zbl
[22] Kudryashov N. A., Ryabov P. N., Sinelshchikov D. I., “Nonlinear waves in media with fifth order dispersion”, Phys. Lett. A, 375 (2011), 2051–2055 | DOI | MR | Zbl