@article{ZVMMF_2016_56_4_a11,
author = {O. V. Bulatov and T. G. Elizarova},
title = {Regularized shallow water equations for numerical simulation of flows with a moving shoreline},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {665--684},
year = {2016},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/}
}
TY - JOUR AU - O. V. Bulatov AU - T. G. Elizarova TI - Regularized shallow water equations for numerical simulation of flows with a moving shoreline JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 665 EP - 684 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/ LA - ru ID - ZVMMF_2016_56_4_a11 ER -
%0 Journal Article %A O. V. Bulatov %A T. G. Elizarova %T Regularized shallow water equations for numerical simulation of flows with a moving shoreline %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 665-684 %V 56 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/ %G ru %F ZVMMF_2016_56_4_a11
O. V. Bulatov; T. G. Elizarova. Regularized shallow water equations for numerical simulation of flows with a moving shoreline. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 665-684. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/
[1] Stoker Dzh. Dzh., Volny na vode. Matematicheskaya teoriya i prilozheniya, IL, M., 1959
[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[3] Levin B. W., Nosov M. A., Physics of tsunamis, Springer, 2008
[4] Elizarova T. G., Bulatov O. V., “Regularized shallow water equations and a new method of simulation of the open channel flows”, Int. J. Comp. and Fluids, 46 (2011), 206–211 | DOI | MR | Zbl
[5] Bulatov O. V., Elizarova T. G., “Regulyarizovannye uravneniya melkoi vody i effektivnyi metod chislennogo modelirovaniya techenii v neglubokikh vodoemakh”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 170–184 | MR | Zbl
[6] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007
[7] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009
[8] Elizarova T. G., Zlotnik A. A., Nikitina O. V., “Modelirovanie odnomernykh techenii melkoi vody na osnove regulyarizovannykh uravnenii”, Preprinty IPM im. M. V. Keldysha, 2011, 033, 36 pp.
[9] Elizarova T. G., Istomina M. A., Shelkovnikov N. K., “Chislennoe modelirovanie formirovaniya uedinennoi volny v koltsevom aerogidrokanale”, Matem. modelirovanie, 24:4 (2012), 107–116
[10] Bulatov O. V., “Analiticheskie i chislennye resheniya uravnenii Sen-Venana dlya nekotorykh zadach o raspade razryva nad ustupom i stupenkoi dna”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 150–163
[11] Elizarova T. G., Saburin D. A., “Chislennoe modelirovanie kolebanii zhidkosti v toplivnykh bakakh”, Matem. modelirovanie, 25:3 (2013), 75–88 | Zbl
[12] Elizarova T. G., Saburin D. S., “Chislennoe modelirovanie voln Faradeya na osnove uravnenii gidrodinamiki v priblizhenii melkoi vody”, Vestnik Mosk. un-ta. Ser. 3. Fizika i astronomiya, 2015, no. 1, 3–8
[13] Zlotnik A. A., “O postroenii kvazigazodinamicheskikh sistem uravnenii i barotropnoi sistemy s potentsialnoi massovoi siloi”, Matem. modelirovanie, 24:4 (2012), 65–79 | MR
[14] Zlotnik A. A., “Energeticheskie ravenstva i otsenki dlya barotropnykh kvazigazo- i kvazigidrodinamicheskikh sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 325–337 | MR | Zbl
[15] Zlotnik A. A., Chetverushkin B. N., “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them”, Comput. Math. and Math. Phys., 48:3 (2008), 445–472 | DOI | MR | Zbl
[16] Sukhomozgii A. A., Sheretov Yu. V., “Edinstvennost resheniya regulyarizovannykh uravnenii Sen-Venana v lineinom priblizhenii”, Vestn. Tverskogo gos. un-ta. Ser. “Prikladnaya matematika”, 2012, no. 1(24), 5–17
[17] Sukhomozgii A. A., Sheretov Yu. V., “Testirovanie novogo algoritma rascheta odnomernykh nestatsionarnykh techenii zhidkosti so svobodnoi granitsei”, Vestn. Tverskogo gos. un-ta. Ser. “Prikladnaya matematika”, 2012, no. 4(27), 47–64 | MR
[18] Elizarova T. G., Bulatov O. V., “Chislennyi algoritm resheniya regulyarizovannykh uravnenii melkoi vody na nestrukturirovannykh setkakh”, Preprinty IPM im. M. V. Keldysha, 2014, 021, 27 pp.
[19] Elizarova T. G., Istomina M. A., “Kvazigazodinamicheskii algoritm resheniya uravnenii melkoi vody v polyarnoi sisteme koordinat”, Preprinty IPM im. M. V. Keldysha, 2014, 065, 24 pp.
[20] LeVeque R. J., “Balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave propogation algorithm”, J. Comput. Phys., 146:1 (1998), 346–365 | DOI | MR | Zbl
[21] Huang Y., Zhang N., Pei Y., “Well-balanced finite volume scheme for shallow water flooding and drying over arbitrary topography”, Engineering Appl. of Computat. Fluid Mech., 7:1 (2013), 40–54
[22] Zlotnik A. A., “O konservativnykh prostranstvennykh diskretizatsiyakh barotropnoi kvazigazodinamicheskoi sistemy uravnenii s potentsialnoi massovoi siloi”, Zh. vychisl. matem. i matem. fiz., 56:2 (2016), 301–318 | DOI
[23] Ricchiuto M., Abgrall R., Deconinck H., “Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes”, J. Comput. Phys., 222 (2007), 287–331 | DOI | MR | Zbl
[24] Birman A., Falcovitz J., “Application of the GRP scheme to open channel flow equations”, J. Comput. Phys., 222 (2007), 131–154 | DOI | MR | Zbl
[25] Petrosyan A. S., Dopolnitelnye glavy gidrodinamiki tyazheloi zhidkosti so svobodnoi granitsei, Mekhanika, upravlenie, informatika, IKI RAN, M., 2010
[26] Kun Xu, “A well-ballanced gas-kinetic scheme for the shallow-water equations with source terms”, J. Comput. phys., 178 (2002), 533–562 | DOI | MR | Zbl
[27] Marche F., Theoretical and numerical study of shallow water models. Application to nearstore hydrodynamics, PhD thesis, Universite de Bordeau 1, 2005 http://www.math.u-bordeau1.fr/marche/THESE/marche.pdf
[28] Carrier G. F., Greenspan H. P., “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4 (1958), 97–109 | DOI | MR | Zbl
[29] Carrier G. F., Wu T. T., Yeh H., “Tsunami run-up and draw-down on a plane beach”, J. Fluid Mechanics, 475 (2003), 79–99 | DOI | MR | Zbl
[30] Benchmark problem No 1. Tsunami Runup onto a plane beach, http://isec.nacse.org/workshop/2004_cornell/bmark1.html
[31] NOAA Center for tsunami research. Tsunami Runup onto a Complex Three-dimensional Beach. Monai Valley, http://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory_MonaiValley/index.html
[32] Ricchiuto M., “An explicit residual based approach for shallow water flows”, J. Comput. Phys., 280 (2015), 306–344 | DOI | MR