Regularized shallow water equations for numerical simulation of flows with a moving shoreline
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 665-684 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical algorithm for simulating free-surface flows based on regularized shallow water equations is adapted to flows involving moving dry-bed areas. Well-balanced versions of the algorithm are constructed. Test computations of flows with dry-bed areas in the cases of water runup onto a plane beach and a constant-slope beach are presented. An example of tsunami simulation is given.
@article{ZVMMF_2016_56_4_a11,
     author = {O. V. Bulatov and T. G. Elizarova},
     title = {Regularized shallow water equations for numerical simulation of flows with a moving shoreline},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {665--684},
     year = {2016},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/}
}
TY  - JOUR
AU  - O. V. Bulatov
AU  - T. G. Elizarova
TI  - Regularized shallow water equations for numerical simulation of flows with a moving shoreline
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 665
EP  - 684
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/
LA  - ru
ID  - ZVMMF_2016_56_4_a11
ER  - 
%0 Journal Article
%A O. V. Bulatov
%A T. G. Elizarova
%T Regularized shallow water equations for numerical simulation of flows with a moving shoreline
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 665-684
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/
%G ru
%F ZVMMF_2016_56_4_a11
O. V. Bulatov; T. G. Elizarova. Regularized shallow water equations for numerical simulation of flows with a moving shoreline. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 665-684. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a11/

[1] Stoker Dzh. Dzh., Volny na vode. Matematicheskaya teoriya i prilozheniya, IL, M., 1959

[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[3] Levin B. W., Nosov M. A., Physics of tsunamis, Springer, 2008

[4] Elizarova T. G., Bulatov O. V., “Regularized shallow water equations and a new method of simulation of the open channel flows”, Int. J. Comp. and Fluids, 46 (2011), 206–211 | DOI | MR | Zbl

[5] Bulatov O. V., Elizarova T. G., “Regulyarizovannye uravneniya melkoi vody i effektivnyi metod chislennogo modelirovaniya techenii v neglubokikh vodoemakh”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 170–184 | MR | Zbl

[6] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[7] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009

[8] Elizarova T. G., Zlotnik A. A., Nikitina O. V., “Modelirovanie odnomernykh techenii melkoi vody na osnove regulyarizovannykh uravnenii”, Preprinty IPM im. M. V. Keldysha, 2011, 033, 36 pp.

[9] Elizarova T. G., Istomina M. A., Shelkovnikov N. K., “Chislennoe modelirovanie formirovaniya uedinennoi volny v koltsevom aerogidrokanale”, Matem. modelirovanie, 24:4 (2012), 107–116

[10] Bulatov O. V., “Analiticheskie i chislennye resheniya uravnenii Sen-Venana dlya nekotorykh zadach o raspade razryva nad ustupom i stupenkoi dna”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 150–163

[11] Elizarova T. G., Saburin D. A., “Chislennoe modelirovanie kolebanii zhidkosti v toplivnykh bakakh”, Matem. modelirovanie, 25:3 (2013), 75–88 | Zbl

[12] Elizarova T. G., Saburin D. S., “Chislennoe modelirovanie voln Faradeya na osnove uravnenii gidrodinamiki v priblizhenii melkoi vody”, Vestnik Mosk. un-ta. Ser. 3. Fizika i astronomiya, 2015, no. 1, 3–8

[13] Zlotnik A. A., “O postroenii kvazigazodinamicheskikh sistem uravnenii i barotropnoi sistemy s potentsialnoi massovoi siloi”, Matem. modelirovanie, 24:4 (2012), 65–79 | MR

[14] Zlotnik A. A., “Energeticheskie ravenstva i otsenki dlya barotropnykh kvazigazo- i kvazigidrodinamicheskikh sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 325–337 | MR | Zbl

[15] Zlotnik A. A., Chetverushkin B. N., “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them”, Comput. Math. and Math. Phys., 48:3 (2008), 445–472 | DOI | MR | Zbl

[16] Sukhomozgii A. A., Sheretov Yu. V., “Edinstvennost resheniya regulyarizovannykh uravnenii Sen-Venana v lineinom priblizhenii”, Vestn. Tverskogo gos. un-ta. Ser. “Prikladnaya matematika”, 2012, no. 1(24), 5–17

[17] Sukhomozgii A. A., Sheretov Yu. V., “Testirovanie novogo algoritma rascheta odnomernykh nestatsionarnykh techenii zhidkosti so svobodnoi granitsei”, Vestn. Tverskogo gos. un-ta. Ser. “Prikladnaya matematika”, 2012, no. 4(27), 47–64 | MR

[18] Elizarova T. G., Bulatov O. V., “Chislennyi algoritm resheniya regulyarizovannykh uravnenii melkoi vody na nestrukturirovannykh setkakh”, Preprinty IPM im. M. V. Keldysha, 2014, 021, 27 pp.

[19] Elizarova T. G., Istomina M. A., “Kvazigazodinamicheskii algoritm resheniya uravnenii melkoi vody v polyarnoi sisteme koordinat”, Preprinty IPM im. M. V. Keldysha, 2014, 065, 24 pp.

[20] LeVeque R. J., “Balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave propogation algorithm”, J. Comput. Phys., 146:1 (1998), 346–365 | DOI | MR | Zbl

[21] Huang Y., Zhang N., Pei Y., “Well-balanced finite volume scheme for shallow water flooding and drying over arbitrary topography”, Engineering Appl. of Computat. Fluid Mech., 7:1 (2013), 40–54

[22] Zlotnik A. A., “O konservativnykh prostranstvennykh diskretizatsiyakh barotropnoi kvazigazodinamicheskoi sistemy uravnenii s potentsialnoi massovoi siloi”, Zh. vychisl. matem. i matem. fiz., 56:2 (2016), 301–318 | DOI

[23] Ricchiuto M., Abgrall R., Deconinck H., “Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes”, J. Comput. Phys., 222 (2007), 287–331 | DOI | MR | Zbl

[24] Birman A., Falcovitz J., “Application of the GRP scheme to open channel flow equations”, J. Comput. Phys., 222 (2007), 131–154 | DOI | MR | Zbl

[25] Petrosyan A. S., Dopolnitelnye glavy gidrodinamiki tyazheloi zhidkosti so svobodnoi granitsei, Mekhanika, upravlenie, informatika, IKI RAN, M., 2010

[26] Kun Xu, “A well-ballanced gas-kinetic scheme for the shallow-water equations with source terms”, J. Comput. phys., 178 (2002), 533–562 | DOI | MR | Zbl

[27] Marche F., Theoretical and numerical study of shallow water models. Application to nearstore hydrodynamics, PhD thesis, Universite de Bordeau 1, 2005 http://www.math.u-bordeau1.fr/marche/THESE/marche.pdf

[28] Carrier G. F., Greenspan H. P., “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4 (1958), 97–109 | DOI | MR | Zbl

[29] Carrier G. F., Wu T. T., Yeh H., “Tsunami run-up and draw-down on a plane beach”, J. Fluid Mechanics, 475 (2003), 79–99 | DOI | MR | Zbl

[30] Benchmark problem No 1. Tsunami Runup onto a plane beach, http://isec.nacse.org/workshop/2004_cornell/bmark1.html

[31] NOAA Center for tsunami research. Tsunami Runup onto a Complex Three-dimensional Beach. Monai Valley, http://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory_MonaiValley/index.html

[32] Ricchiuto M., “An explicit residual based approach for shallow water flows”, J. Comput. Phys., 280 (2015), 306–344 | DOI | MR