Computationally efficient algorithm for Gaussian Process regression in case of structured samples
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 507-522

Voir la notice de l'article provenant de la source Math-Net.Ru

Surrogate modeling is widely used in many engineering problems. Data sets often have Cartesian product structure (for instance factorial design of experiments with missing points). In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation-Gaussian Process regression-can be hardly applied due to its computational complexity. In this paper a computationally efficient approach for constructing Gaussian Process regression in case of data sets with Cartesian product structure is presented. Efficiency is achieved by using a special structure of the data set and operations with tensors. Proposed algorithm has low computational as well as memory complexity compared to existing algorithms. In this work we also introduce a regularization procedure allowing to take into account anisotropy of the data set and avoid degeneracy of regression model.
@article{ZVMMF_2016_56_4_a0,
     author = {M. Belyaev and E. Burnaev and E. Kapushev},
     title = {Computationally efficient algorithm for {Gaussian} {Process} regression in case of structured samples},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {507--522},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/}
}
TY  - JOUR
AU  - M. Belyaev
AU  - E. Burnaev
AU  - E. Kapushev
TI  - Computationally efficient algorithm for Gaussian Process regression in case of structured samples
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 507
EP  - 522
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/
LA  - ru
ID  - ZVMMF_2016_56_4_a0
ER  - 
%0 Journal Article
%A M. Belyaev
%A E. Burnaev
%A E. Kapushev
%T Computationally efficient algorithm for Gaussian Process regression in case of structured samples
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 507-522
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/
%G ru
%F ZVMMF_2016_56_4_a0
M. Belyaev; E. Burnaev; E. Kapushev. Computationally efficient algorithm for Gaussian Process regression in case of structured samples. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 507-522. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/