Computationally efficient algorithm for Gaussian Process regression in case of structured samples
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 507-522
Voir la notice de l'article provenant de la source Math-Net.Ru
Surrogate modeling is widely used in many engineering problems. Data sets often have Cartesian product structure (for instance factorial design of experiments with missing points). In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation-Gaussian Process regression-can be hardly applied due to its computational complexity. In this paper a computationally efficient approach for constructing Gaussian Process regression in case of data sets with Cartesian product structure is presented. Efficiency is achieved by using a special structure of the data set and operations with tensors. Proposed algorithm has low computational as well as memory complexity compared to existing algorithms. In this work we also introduce a regularization procedure allowing to take into account anisotropy of the data set and avoid degeneracy of regression model.
@article{ZVMMF_2016_56_4_a0,
author = {M. Belyaev and E. Burnaev and E. Kapushev},
title = {Computationally efficient algorithm for {Gaussian} {Process} regression in case of structured samples},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {507--522},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/}
}
TY - JOUR AU - M. Belyaev AU - E. Burnaev AU - E. Kapushev TI - Computationally efficient algorithm for Gaussian Process regression in case of structured samples JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 507 EP - 522 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/ LA - ru ID - ZVMMF_2016_56_4_a0 ER -
%0 Journal Article %A M. Belyaev %A E. Burnaev %A E. Kapushev %T Computationally efficient algorithm for Gaussian Process regression in case of structured samples %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 507-522 %V 56 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/ %G ru %F ZVMMF_2016_56_4_a0
M. Belyaev; E. Burnaev; E. Kapushev. Computationally efficient algorithm for Gaussian Process regression in case of structured samples. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 4, pp. 507-522. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_4_a0/