On a class of optimal control problems with distributed and lumped parameters
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 409-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal control of moving sources governed by a parabolic equation and a system of ordinary differential equations with initial and boundary conditions is considered. For this problem, an existence and uniqueness theorem is proved, sufficient conditions for the Fréchet differentiability of the cost functional are established, an expression for its gradient is derived, and necessary optimality conditions in the form of pointwise and integral maximum principles are obtained.
@article{ZVMMF_2016_56_3_a7,
     author = {R. A. Teymurov},
     title = {On a class of optimal control problems with distributed and lumped parameters},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {409--420},
     year = {2016},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a7/}
}
TY  - JOUR
AU  - R. A. Teymurov
TI  - On a class of optimal control problems with distributed and lumped parameters
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 409
EP  - 420
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a7/
LA  - ru
ID  - ZVMMF_2016_56_3_a7
ER  - 
%0 Journal Article
%A R. A. Teymurov
%T On a class of optimal control problems with distributed and lumped parameters
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 409-420
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a7/
%G ru
%F ZVMMF_2016_56_3_a7
R. A. Teymurov. On a class of optimal control problems with distributed and lumped parameters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 409-420. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a7/

[1] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Fizmatgiz, M., 1965 | MR

[2] Butkovskii A. G., Pustylnikov L. M., Teoriya podvizhnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1980 | MR

[3] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004 | MR

[4] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1991

[5] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[6] Teimurov R. A., “Zadacha optimalnogo upravleniya podvizhnymi istochnikami dlya uravnenii teploprovodnosti”, Izv. vyssh. uchebn. zavedenii. Severo-Kavkazskii region. Estestvennye nauki, 2012, no. 4, 17–20

[7] Teimurov R. A., “O zadache upravleniya podvizhnymi istochnikami dlya sistem s raspredelennymi parametrami”, Vestnik Tomskogo gos. un-ta. Matem. i mekhan., 2013, no. 1(21), 24–33

[8] Goebel M., “On existence of optimal control”, Math. Nach., 93 (1979), 67–73 | DOI | MR | Zbl

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[10] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR

[11] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981

[12] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[13] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR