Application of linear programming techniques for controlling linear dynamic plants in real time
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 394-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.
@article{ZVMMF_2016_56_3_a6,
     author = {R. Gabasov and F. M. Kirillova and Vo Thi Thanh Ha},
     title = {Application of linear programming techniques for controlling linear dynamic plants in real time},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {394--408},
     year = {2016},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a6/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - F. M. Kirillova
AU  - Vo Thi Thanh Ha
TI  - Application of linear programming techniques for controlling linear dynamic plants in real time
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 394
EP  - 408
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a6/
LA  - ru
ID  - ZVMMF_2016_56_3_a6
ER  - 
%0 Journal Article
%A R. Gabasov
%A F. M. Kirillova
%A Vo Thi Thanh Ha
%T Application of linear programming techniques for controlling linear dynamic plants in real time
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 394-408
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a6/
%G ru
%F ZVMMF_2016_56_3_a6
R. Gabasov; F. M. Kirillova; Vo Thi Thanh Ha. Application of linear programming techniques for controlling linear dynamic plants in real time. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 394-408. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a6/

[1] Leondes K. T., Filtratsiya i stokhasticheskoe upravlenie v dinamicheskikh sistemakh, Mir, M., 1980

[2] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii, v. 2, Zadachi upravleniya, Universitetskoe, Minsk, 1984 | MR

[3] Gabasov R., Kirillova F. M., Pavlenok N. S., “Optimalnoe upravlenie dinamicheskim ob'ektom po sovershennym izmereniyam ego sostoyanii”, Dokl. RAN, 444:4 (2012), 371–375 | Zbl

[4] Gabasov R., Kirillova F. M., Vo Tkhi Tan Kha, “Optimalnoe upravlenie v realnom vremeni mnogomernym dinamicheskim ob'ektom”, Avtomatika i telemekhan., 2015, no. 1, 121–135

[5] Gabasov R., Kirillova F. M., Vo Tkhi Tan Kha, “Nablyudenie lineinykh sistem po printsipu razmykaemogo kontura”, Problemy fiziki, matem. i tekhn., 2014, no. 4(21), 60–69

[6] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976

[7] Vellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960

[8] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe upravlenie mnogomernymi sistemami po netochnym izmereniyam ikh vykhodnykh signalov”, Tr. In-ta matem. i mekhan. UrO RAN, 10, no. 2, 2004, 35–57 | MR | Zbl

[9] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii, v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR