Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 377-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of reconstructing the unknown amplitude of a random disturbance in a linear stochastic differential equation is studied in a fairly general formulation by applying dynamic inversion theory. The amplitude is reconstructed using discrete information on several realizations of some of the coordinates of the stochastic process. The problem is reduced to an inverse one for a system of ordinary differential equations satisfied by the elements of the covariance matrix of the original process. Constructive solvability conditions in the form of relations on the parameters of the system are discussed. A finite-step software implementable solving algorithm based on the method of auxiliary controlled models is tested using a numerical example. The accuracy of the algorithm is estimated with respect to the number of measured realizations.
@article{ZVMMF_2016_56_3_a4,
     author = {V. L. Rozenberg},
     title = {Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {377--386},
     year = {2016},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/}
}
TY  - JOUR
AU  - V. L. Rozenberg
TI  - Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 377
EP  - 386
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/
LA  - ru
ID  - ZVMMF_2016_56_3_a4
ER  - 
%0 Journal Article
%A V. L. Rozenberg
%T Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 377-386
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/
%G ru
%F ZVMMF_2016_56_3_a4
V. L. Rozenberg. Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 377-386. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/

[1] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995 | MR | Zbl

[2] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[3] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1984 | MR

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978

[6] Kryazhimskii A. V., Osipov Yu. S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam chasti koordinat”, Nekotorye zadachi upravleniya i ustoichivosti, UrO AN SSSR, Sverdlovsk, 1989, 33–47 | MR

[7] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Nekotorye algoritmy vosstanovleniya vkhodov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, IMM UrO RAN, Ekaterinburg, 2011, 129–161 | Zbl

[8] Blizorukova M. S., Maksimov V. I., “Ob odnom algoritme rekonstruktsii traektorii i upravleniya v sisteme s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, IMM UrO RAN, Ekaterinburg, 2012, 109–122

[9] Osipov Yu. S., Kryazhimskii A. V., “Pozitsionnoe modelirovanie stokhasticheskogo upravleniya v dinamicheskikh sistemakh”, Dokl. mezhdunar. konf. po stokhasticheskoi optimizatsii (Kiev, 1984), 43–45

[10] Rozenberg V. L., “K zadache dinamicheskoi rekonstruktsii vozmuscheniya v stokhasticheskom differentsialnom uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:10 (2011), 1806–1815 | MR | Zbl

[11] Rozenberg V. L., “Ob odnoi zadache vosstanovleniya vozmuscheniya v stokhasticheskom differentsialnom uravnenii”, Avtomatika i telemekhanika, 2012, no. 3, 91–106

[12] Rozenberg V. L., “Zadacha dinamicheskogo vosstanovleniya neizvestnoi funktsii v lineinom stokhasticheskom differentsialnom uravnenii”, Avtomatika i telemekhanika, 2007, no. 11, 76–87

[13] Shiryaev A. N., Veroyatnost, statistika, sluchainye protsessy, Izd-vo MGU, M., 1974

[14] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vvedenie v teoriyu i prilozheniya, Mir, M., 2003

[15] Chernousko F. A., Kolmanovskii V. B., Optimalnoe upravlenie pri sluchainykh vozmuscheniyakh, Nauka, M., 1978 | MR

[16] Pugachev V. S., Sinitsyn I. N., Stokhasticheskie differentsialnye sistemy, Nauka, M., 1990 | MR

[17] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[18] Vdovin A. Yu., K zadache vosstanovleniya vozmuscheniya v dinamicheskoi sisteme, Diss. ... kand. fiz.-matem. nauk, UrO AN SSSR, Sverdlovsk, 1989

[19] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985 | MR

[20] Milshtein G. N., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo UrGU, Sverdlovsk, 1988 | MR