Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 377-386
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of reconstructing the unknown amplitude of a random disturbance in a linear stochastic differential equation is studied in a fairly general formulation by applying dynamic inversion theory. The amplitude is reconstructed using discrete information on several realizations of some of the coordinates of the stochastic process. The problem is reduced to an inverse one for a system of ordinary differential equations satisfied by the elements of the covariance matrix of the original process. Constructive solvability conditions in the form of relations on the parameters of the system are discussed. A finite-step software implementable solving algorithm based on the method of auxiliary controlled models is tested using a numerical example. The accuracy of the algorithm is estimated with respect to the number of measured realizations.
@article{ZVMMF_2016_56_3_a4,
author = {V. L. Rozenberg},
title = {Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {377--386},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/}
}
TY - JOUR AU - V. L. Rozenberg TI - Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 377 EP - 386 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/ LA - ru ID - ZVMMF_2016_56_3_a4 ER -
%0 Journal Article %A V. L. Rozenberg %T Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 377-386 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/ %G ru %F ZVMMF_2016_56_3_a4
V. L. Rozenberg. Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 377-386. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a4/