@article{ZVMMF_2016_56_3_a3,
author = {A. I. Zadorin and N. A. Zadorin},
title = {Analogue of {Newton-Cotes} formulas for numerical integration of functions with a boundary-layer component},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {368--376},
year = {2016},
volume = {56},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/}
}
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 368 EP - 376 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/ LA - ru ID - ZVMMF_2016_56_3_a3 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 368-376 %V 56 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/ %G ru %F ZVMMF_2016_56_3_a3
A. I. Zadorin; N. A. Zadorin. Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 368-376. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/
[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR
[2] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Nauka, M., 1966
[3] Krylov V. I., Shulgina L. T., Spravochnaya kniga po chislennomu integrirovaniyu, Nauka, M., 1966 | MR
[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Sci. Publish., Singapore, 2012 | MR | Zbl
[6] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl
[7] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Monographs and Surveys in Pure and Applied Mathematics, 140, Chapman Hall/CRC, Boca Raton, 2009 | MR | Zbl
[8] Zadorin A. I., Zadorin N. A., “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962 | MR | Zbl
[9] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matem., 10:3 (2007), 267–275
[10] Zadorin A. I., Zadorin N. A., “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 221–233 | MR | Zbl
[11] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Math. Rept., 9 (2012), 445–455 | MR | Zbl
[12] Zadorin A. I., Zadorin N. A., “Analog formuly Nyutona–Kotesa s chetyrmya uzlami dlya funktsii s pogransloinoi sostavlyayuschei”, Sibirskii zhurnal vychisl. matem., 16:4 (2013), 313–323 | MR | Zbl
[13] Zadorin A., Zadorin N., “Quadrature formula with five nodes for functions with a boundary layer component”, Lect. Notes in Comput. Sci., 8236, Springer, Berlin, 2013, 540–546 | DOI | MR | Zbl
[14] Kuzmin P. O., “K teorii mekhanicheskikh kvadratur”, Izvestiya Leningradskogo politekhnicheskogo instituta. Otdelenie tekhn. estestv. i matem., 33 (1931), 5–14