Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 368-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical integration of functions with a boundary-layer component whose derivatives are not uniformly bounded is investigated. The Newton-Cotes formulas as applied to such functions can lead to significant errors. An analogue of Newton-Cotes formulas that is exact for the boundary-layer component is constructed. For the resulting formula, an error estimate that is uniform with respect to the boundary-layer component and its derivatives is obtained. Numerical results that agree with the error estimates are presented.
@article{ZVMMF_2016_56_3_a3,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Analogue of {Newton-Cotes} formulas for numerical integration of functions with a boundary-layer component},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {368--376},
     year = {2016},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 368
EP  - 376
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/
LA  - ru
ID  - ZVMMF_2016_56_3_a3
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 368-376
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/
%G ru
%F ZVMMF_2016_56_3_a3
A. I. Zadorin; N. A. Zadorin. Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 368-376. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a3/

[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR

[2] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Nauka, M., 1966

[3] Krylov V. I., Shulgina L. T., Spravochnaya kniga po chislennomu integrirovaniyu, Nauka, M., 1966 | MR

[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Sci. Publish., Singapore, 2012 | MR | Zbl

[6] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl

[7] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Monographs and Surveys in Pure and Applied Mathematics, 140, Chapman Hall/CRC, Boca Raton, 2009 | MR | Zbl

[8] Zadorin A. I., Zadorin N. A., “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962 | MR | Zbl

[9] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matem., 10:3 (2007), 267–275

[10] Zadorin A. I., Zadorin N. A., “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 221–233 | MR | Zbl

[11] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Math. Rept., 9 (2012), 445–455 | MR | Zbl

[12] Zadorin A. I., Zadorin N. A., “Analog formuly Nyutona–Kotesa s chetyrmya uzlami dlya funktsii s pogransloinoi sostavlyayuschei”, Sibirskii zhurnal vychisl. matem., 16:4 (2013), 313–323 | MR | Zbl

[13] Zadorin A., Zadorin N., “Quadrature formula with five nodes for functions with a boundary layer component”, Lect. Notes in Comput. Sci., 8236, Springer, Berlin, 2013, 540–546 | DOI | MR | Zbl

[14] Kuzmin P. O., “K teorii mekhanicheskikh kvadratur”, Izvestiya Leningradskogo politekhnicheskogo instituta. Otdelenie tekhn. estestv. i matem., 33 (1931), 5–14