@article{ZVMMF_2016_56_3_a16,
author = {A. V. Kel'manov and A. V. Pyatkin},
title = {On the complexity of some quadratic {Euclidean} 2-clustering problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {498--504},
year = {2016},
volume = {56},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a16/}
}
TY - JOUR AU - A. V. Kel'manov AU - A. V. Pyatkin TI - On the complexity of some quadratic Euclidean 2-clustering problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 498 EP - 504 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a16/ LA - ru ID - ZVMMF_2016_56_3_a16 ER -
%0 Journal Article %A A. V. Kel'manov %A A. V. Pyatkin %T On the complexity of some quadratic Euclidean 2-clustering problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 498-504 %V 56 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a16/ %G ru %F ZVMMF_2016_56_3_a16
A. V. Kel'manov; A. V. Pyatkin. On the complexity of some quadratic Euclidean 2-clustering problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 498-504. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a16/
[1] Bern M., Eppstein D., “Approximation algorithms for geometric problems”, Approximation algorithms for NP-hard problems, ed. Hochbaum D. S., PWS Publishing Co., Boston, 1997, 296–345
[2] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979 | MR | Zbl
[3] Bishop M. C., Pattern recognition and machine learning, Springer Science+Business Media, LLC, New York, 2006 | MR | Zbl
[4] James G., Witten D., Hastie T., Tibshirani R., An introduction to statistical learning, Springer Science+Business Media, LLC, New York, 2013 | MR | Zbl
[5] Flach P., Machine learning: the art and science of algorithms that make sense of data, Cambridge University Press, New York, 2012 | MR | Zbl
[6] Sahni S., Gonzalez T., “P-complete approximation problems”, J. of the ACM, 23 (1976), 555–566 | DOI | MR
[7] Brucker P., “On the complexity of clustering problems”, Lecture Notes in Economics and Mathematical Systems, 157, 1978, 45–54 | DOI | MR | Zbl
[8] de la Vega F., Kenyon C., “A randomized approximation scheme for metric max-cut”, J. Comput. and Sci., 63 (2001), 531–541 | MR | Zbl
[9] de la Vega F., Karpinski M., Kenyon C., Rabani Y., Polynomial time approximation schemes for Metric min-sum clustering, Electronic Colloquium on Computational Complexity (ECCC), Report No 25, 2002
[10] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. AN, 421:5 (2008), 590–592 | Zbl
[11] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 2059–2065 | MR | Zbl
[12] Fisher R. A., Statistical methods and scientific inference, Hafner Press, New York, 1956
[13] Galashov A. E., Kelmanov A. V., “2-priblizhennyi algoritm dlya odnoi zadachi poiska semeistva neperesekayuschikhsya podmnozhestv vektorov”, Avtomatika i telemekhanika, 4 (2014), 5–17
[14] Inaba M., Katoh N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering: (extended abstract)”, Proc. 10th ACM Symposium on Computational Geometry (Strony Brook, New York, 1994), 1994, 332–339
[15] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Machine Learning, 75:2 (2009), 245–248 | DOI
[16] Kelmanov A. V., “O slozhnosti nekotorykh zadach analiza dannykh”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 2045–2051 | MR | Zbl
[17] Kelmanov A. V., “O slozhnosti nekotorykh zadach klasternogo analiza”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 2106–2112 | MR | Zbl
[18] Ageev A. A., Kelmanov A. V., Pyatkin A. V., “Trudnoreshaemost zadachi o razreze maksimalnogo vesa v evklidovom prostranstve”, Dokl. AN, 456:5 (2014), 511–513 | DOI | Zbl
[19] Ageev A. A., Kelmanov A. V., Pyatkin A. V., “Slozhnost zadachi o razreze maksimalnogo vesa v evklidovom prostranstve”, Diskretnyi analiz i issledovanie operatsii, 21:4 (2014), 3–11
[20] Bui T. N., Chaudhuri S., Leighton F. T., Sipser M., “Graph bisection algorithms with good average case behavior”, Combinatorica, 7:2 (1987), 171–191 | DOI | MR
[21] Vazirani V. V., Approximation algorithms, Springer, Berlin–Heidelberg–New York, 2001 | MR