Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 490-497 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to development of methods for solving inverse problems in acoustics. Propagation of an acoustic field in a body located in the free space is considered. In the inverse problem, an iterative method for reconstructing the parameters of inhomogeneity of a body from a known acoustic field is applied. The theorem on convergence of the method is proven. Numerical results for inhomogeneous bodies of complex form are presented.
@article{ZVMMF_2016_56_3_a15,
     author = {R. O. Evstigneev and M. Yu. Medvedik and Yu. G. Smirnov},
     title = {Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {490--497},
     year = {2016},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a15/}
}
TY  - JOUR
AU  - R. O. Evstigneev
AU  - M. Yu. Medvedik
AU  - Yu. G. Smirnov
TI  - Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 490
EP  - 497
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a15/
LA  - ru
ID  - ZVMMF_2016_56_3_a15
ER  - 
%0 Journal Article
%A R. O. Evstigneev
%A M. Yu. Medvedik
%A Yu. G. Smirnov
%T Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 490-497
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a15/
%G ru
%F ZVMMF_2016_56_3_a15
R. O. Evstigneev; M. Yu. Medvedik; Yu. G. Smirnov. Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 490-497. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a15/

[1] Dmitriev V. I., Obratnye zadachi geofiziki, MAKS Press, M., 2012

[2] Samokhin A. B., Integralnye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii, Radio i svyaz, M., 1998

[3] Ilinskii A. S., Sveshnikov A. G., “Pryamye i obratnye zadachi elektrodinamiki”, Vestnik MGU. Seriya 15. Vychisl. matem. i kibernetika, 1978, no. 4, 3–11

[4] Medvedik M. Yu., Smirnov Yu. G., Obratnye zadachi vosstanovleniya dielektricheskoi pronitsaemosti neodnorodnogo tela v volnovode, Izd-vo PGU, Penza, 2014

[5] Medvedik M. Yu., Smirnov Yu. G., “Subierarkhicheskii parallelnyi vychislitelnyi algoritm dlya resheniya zadach difraktsii elektromagnitnykh voln na ploskikh ekranakh”, Radiotekhn. i elektronika, 53:4 (2008), 441–446

[6] Medvedik M. Yu., Smirnov Yu. G., Sobolev S. I., “Parallelnyi algoritm rascheta poverkhnostnykh tokov v elektromagnitnoi zadache difraktsii na ekrane”, Vychisl. metody i programmirovanie, 6 (2005), 99–108 | Zbl

[7] Medvedik M. Yu., “Primenenie subierarkhicheskogo metoda v zadachakh elektrodinamiki”, Vychisl. Metody i programmirovanie, 13 (2012), 87–97

[8] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, MGU, 1983 | MR

[9] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR

[10] Tsupak A. A., “O edinstvennosti resheniya zadachi difraktsii akusticheskoi volny na sisteme neperesekayuschikhsya ekranov i neodnorodnykh tel”, Izvestiya vuzov. Povolzhskii region. Fiz.-matem. nauki, 2014, no. 1, 30–38

[11] Kress R., Linear integral equations, Appl. Math. Sci., 82, Springer, New-York, 1989 | DOI | MR | Zbl