Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 455-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equilibrium problem for a membrane containing a set of volume and thin rigid inclusions is considered. A solution algorithm reducing the original problem to a system of Dirichlet ones is proposed. Several examples are presented in which the problem is solved numerically by applying the finite element method.
@article{ZVMMF_2016_56_3_a12,
     author = {E. M. Rudoy},
     title = {Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {455--464},
     year = {2016},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a12/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 455
EP  - 464
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a12/
LA  - ru
ID  - ZVMMF_2016_56_3_a12
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 455-464
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a12/
%G ru
%F ZVMMF_2016_56_3_a12
E. M. Rudoy. Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 455-464. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a12/

[1] Tezduyar T. E., Wheeler T., Graux L., “Finite deformation of a circular elastic membrane containing a concentric rigid inclusion”, Int. J. Non-Linear Mechanics, 22:1 (1987), 61–72 | DOI | Zbl

[2] Nerantzakia M. S., Kandilas C. B., “Geometrically nonlinear analysis of elastic membranes with embedded rigid inclusions”, Eng. Analys. with Boundary Elements, 31 (2007), 216–225 | DOI

[3] Singh B. M., Rokne J. G., Dhaliwal R. S., “Closed form solution for an annular elliptic crack around an elliptic rigid inclusion in an infinite solid”, ZAMM. Z. Angew. Math. Mech., 92:11–12 (2012), 882–887 | DOI | MR | Zbl

[4] Kandilas C. B., Nerantzaki M. S., “Nonlinear transient dynamic response of elastic membranes with embedded rigid inclusions”, Eng. Analys. with Boundary Elements, 32:10 (2008), 824–838 | DOI | Zbl

[5] Kerr G., Melrose G., Tweed J., “Antiplane shear of a strip containing a staggered array of rigid line inclusions”, Math. Comput. Modelling, 25:12 (1997), 11–18 | DOI | MR | Zbl

[6] Piccolroaz A., Mishuris G., Movchan A., Movchan N., “Perturbation analysis of Mode III interfacial cracks advancing in a dilute heterogeneous material”, Internat. J. Solids and Structures, 49:1 (2012), 244–255 | DOI

[7] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1976

[8] Kolpakov A. G., “Skhodimost reshenii pri setevoi approksimatsii dvumernogo uravneniya Laplasa v oblasti s sistemoi absolyutno provodyaschikh diskov”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1682–1691 | MR

[9] Ekeland I., Temam R., Convex analysis and variational problems, SIAM, Philadelphia, 1999 | MR

[10] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT-Press, Southampton–Boston, 2000

[11] Hecht F., “New development in FreeFem++”, J. Numer. Math., 20:3–4 (2012), 251–265 | MR | Zbl