On the principal and strictly particular solutions to infinite systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 351-362 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concepts of the principal solution to infinite systems of linear algebraic equations and the reduction method are defined more precisely. The principal solution, if it exists, is a strictly particular solution to the infinite system. If the reduction method is convergent, then it necessarily converges to Kramer’s determinant; however, Kramer’s determinant is not always a solution to the infinite system. To confirm the obtained results, analytical and numerical solutions of specific infinite system are considered.
@article{ZVMMF_2016_56_3_a1,
     author = {O. F. Ivanova and N. N. Pavlov and F. M. Fedorov},
     title = {On the principal and strictly particular solutions to infinite systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {351--362},
     year = {2016},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/}
}
TY  - JOUR
AU  - O. F. Ivanova
AU  - N. N. Pavlov
AU  - F. M. Fedorov
TI  - On the principal and strictly particular solutions to infinite systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 351
EP  - 362
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/
LA  - ru
ID  - ZVMMF_2016_56_3_a1
ER  - 
%0 Journal Article
%A O. F. Ivanova
%A N. N. Pavlov
%A F. M. Fedorov
%T On the principal and strictly particular solutions to infinite systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 351-362
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/
%G ru
%F ZVMMF_2016_56_3_a1
O. F. Ivanova; N. N. Pavlov; F. M. Fedorov. On the principal and strictly particular solutions to infinite systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 351-362. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/

[1] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, GITTL, M., 1952

[2] Koyalovich B. M., “Issledovaniya o beskonechnykh sistemakh lineinykh uravnenii”, Izv. fiz.-mat. in-ta im. V. A. Steklova, 3, 1930, 41–167

[3] Kuzmin R. O., “Ob odnom klasse beskonechnykh sistem lineinykh uravnenii”, Izv. AN SSSR. VII ser. Otd. mat. i estestv. nauk, 1934, no. 1, 515–546

[4] Bondarenko P. S., “K voprosu ob edinstvennosti dlya beskonechnykh sistem lineinykh uravnenii”, Matem. sb., 29(71):2 (1951), 403–418 | MR | Zbl

[5] Fedorov F. M., Periodicheskie beskonechnye sistemy lineinykh algebraicheskikh uravnenii, Nauka, Novosibirsk, 2009

[6] Fedorov F. M., Beskonechnye sistemy lineinykh algebraicheskikh uravnenii i ikh prilozheniya, Nauka, Novosibirsk, 2011

[7] Kagan V. F., Osnovaniya teorii opredelitelei, Gos. izd. Ukr., Kiev, 1922

[8] Kuk R., Beskonechnye matritsy i prostranstva posledovatelnostei, Fizmatgiz, M., 1960 | MR

[9] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[10] Shestopalov V. P., Kirilenko A. A., Masalov S. A., Matrichnye uravneniya tipa svertki, Naukova dumka, Kiev, 1984 | MR

[11] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974

[12] Papernov E. L., “O reshenii beskonechnykh sistem lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 18:5 (1978), 1300–1302 | MR | Zbl

[13] Masalov S. A., “Metod poluobrascheniya i beskonechnye sistemy uravnenii v nekotorykh zadachakh difraktsii voln”, Zh. vychisl. matem. i matem. fiz., 21:1 (1981), 80–88 | MR

[14] Fedorov F. M., “Ob algoritme Gaussa dlya beskonechnykh sistem lineinykh algebraicheskikh uravnenii (BSLAU)”, Matem. zametki YaGU, 19:1 (2012), 133–140 | Zbl

[15] Fedorov F. M., Ivanova O. F., Pavlov N. N., “Skhodimost metoda reduktsii i sovmestnost beskonechnykh sistem”, Vestnik SVFU im. M. K. Ammosova, 11:2 (2014), 14–21 | MR

[16] Fedorov F. M., “Neodnorodnye gaussovy beskonechnye sistemy lineinykh algebraicheskikh uravnenii (BSLAU)”, Matem. zametki YaGU, 19:1 (2012), 124–131

[17] Fedorov F. M., Pavlov N. N., Ivanova O. F., “Algoritmy realizatsii reshenii beskonechnykh sistem lineinykh algebraicheskikh uravnenii”, Matem. zametki YaGU, 20:1 (2013), 215–223

[18] Fedorov F. M., Ivanova O. F., Pavlov N. N., “Strogo chastnoe reshenie i sovmestnost beskonechnykh sistem”, 7-ya Mezhdunarodnaya konferentsiya po matematicheskomu modelirovaniyu, Tezisy (Yakutsk, 30 iyunya–4 iyulya, 2014 g.), Yakutsk, 2014, 110–111 | Zbl

[19] Godunov C. K., Ryabenkii B. C., Raznostnye skhemy. Vvedenie v teoriyu, Nauka. Fizmatgiz, M., 1973