On the principal and strictly particular solutions to infinite systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 351-362

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of the principal solution to infinite systems of linear algebraic equations and the reduction method are defined more precisely. The principal solution, if it exists, is a strictly particular solution to the infinite system. If the reduction method is convergent, then it necessarily converges to Kramer’s determinant; however, Kramer’s determinant is not always a solution to the infinite system. To confirm the obtained results, analytical and numerical solutions of specific infinite system are considered.
@article{ZVMMF_2016_56_3_a1,
     author = {O. F. Ivanova and N. N. Pavlov and F. M. Fedorov},
     title = {On the principal and strictly particular solutions to infinite systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {351--362},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/}
}
TY  - JOUR
AU  - O. F. Ivanova
AU  - N. N. Pavlov
AU  - F. M. Fedorov
TI  - On the principal and strictly particular solutions to infinite systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 351
EP  - 362
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/
LA  - ru
ID  - ZVMMF_2016_56_3_a1
ER  - 
%0 Journal Article
%A O. F. Ivanova
%A N. N. Pavlov
%A F. M. Fedorov
%T On the principal and strictly particular solutions to infinite systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 351-362
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/
%G ru
%F ZVMMF_2016_56_3_a1
O. F. Ivanova; N. N. Pavlov; F. M. Fedorov. On the principal and strictly particular solutions to infinite systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 3, pp. 351-362. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_3_a1/