Nonstationary problem of free convection with radiative heat transfer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 275-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonstationary problem of free convection of viscous incompressible fluid in a three-dimensional domain with allowance for radiative heat transfer is studied in the framework of the diffusion $P_1$-approximation of the equation of radiative transfer. The solvability of the problem is proven, and sufficient conditions for the uniqueness are presented.
@article{ZVMMF_2016_56_2_a9,
     author = {G. V. Grenkin and A. Yu. Chebotarev},
     title = {Nonstationary problem of free convection with radiative heat transfer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {275--282},
     year = {2016},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a9/}
}
TY  - JOUR
AU  - G. V. Grenkin
AU  - A. Yu. Chebotarev
TI  - Nonstationary problem of free convection with radiative heat transfer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 275
EP  - 282
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a9/
LA  - ru
ID  - ZVMMF_2016_56_2_a9
ER  - 
%0 Journal Article
%A G. V. Grenkin
%A A. Yu. Chebotarev
%T Nonstationary problem of free convection with radiative heat transfer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 275-282
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a9/
%G ru
%F ZVMMF_2016_56_2_a9
G. V. Grenkin; A. Yu. Chebotarev. Nonstationary problem of free convection with radiative heat transfer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 275-282. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a9/

[1] Modest M. F., Radiative Heat Transfer, Academic Press, New York, 2003

[2] Tse O., Pinnau R., “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl

[3] Grenkin G. V., Chebotarev A. Yu., “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:11 (2014), 1806–1816 | DOI | MR | Zbl

[4] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modelled by the $\mathrm{SP_1}$-system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[5] Amosov A. A., “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, J. Math. Sci., 165:1 (2010), 1–41 | DOI | MR | Zbl

[6] Amosov A. A., “Nonstationary radiative-conductive heat transfer problem in a periodic system of grey heat shields”, J. Math. Sci., 169:1 (2010), 1–45 | DOI | MR | Zbl

[7] Kovtanyuk A. E., Chebotarev A. Yu., “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219:17 (2013), 9356–9362 | DOI | MR | Zbl

[8] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 711–719 | DOI | MR | Zbl

[9] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differents. ur-niya, 50:12 (2014), 1590–1597 | DOI | Zbl

[10] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Analys. Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl

[11] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “The unique solvability of a complex 3D heat transfer problem”, J. Math. Analys. Appl., 409:2 (2014), 808–815 | DOI | MR | Zbl

[12] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Solvability of $P_1$ approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | DOI | MR

[13] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl

[14] Seaïd M., Frank M., Klar A., Pinnau R., Thömmes G., “Efficient numerical methods for radiation in gas turbines”, J. Comput. Appl. Math., 170:1 (2004), 217–239 | DOI | MR | Zbl

[15] Klar A., Lang J., Seaïd M., “Adaptive solution of $\mathrm{SP}_N$-approximations to radiative heat transfer in glass”, Int. J. Therm. Sci., 44:11 (2005), 1013–1023 | DOI

[16] Pinnau R., Seaïd M., “Simplified $\mathrm{P}_N$ models and natural convection-radiation”, Progress in Industrial Mathematics at ECMI 2006, Math. Ind., 12, Springer, 2008, 397–401 | DOI | MR | Zbl

[17] Kovtanyuk A. E., “Algoritmy parallelnykh vychislenii v zadachakh radiatsionno-konduktivnogo teploobmena”, Kompyuternye issledovaniya i modelirovanie, 4:3 (2012), 543–552

[18] Kovtanyuk A. E., Botkin N. D., Hoffmann K.-H., “Numerical simulations of a coupled radiative-conductive heat transfer model using a modified Monte Carlo method”, Int. J. Heat Mass Tran., 55:4 (2012), 649–654 | DOI | MR | Zbl

[19] Morimoto H., “Non-stationary Boussinesq equations”, J. Fac. Sci. Univ. Tokyo. Sect. IA, Math., 39 (1992), 61–75 | MR | Zbl

[20] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[21] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[22] Simon J., “Compact sets in the space $L^p(0, T; B)$”, Ann. Mat. Pura Appl., 146:1 (1986), 65–96 | DOI | MR