An algorithm for reconstructing the Dirac operator with a spectral parameter in the boundary condition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 252-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of reconstructing the Dirac operator with nonseparated boundary conditions of which one includes a spectral parameter is considered. A uniqueness theorem is proved, and an algorithm for solving the inverse problem is proposed.
@article{ZVMMF_2016_56_2_a7,
     author = {T. Sh. Abdullaev and I. M. Nabiev},
     title = {An algorithm for reconstructing the {Dirac} operator with a spectral parameter in the boundary condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {252--258},
     year = {2016},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a7/}
}
TY  - JOUR
AU  - T. Sh. Abdullaev
AU  - I. M. Nabiev
TI  - An algorithm for reconstructing the Dirac operator with a spectral parameter in the boundary condition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 252
EP  - 258
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a7/
LA  - ru
ID  - ZVMMF_2016_56_2_a7
ER  - 
%0 Journal Article
%A T. Sh. Abdullaev
%A I. M. Nabiev
%T An algorithm for reconstructing the Dirac operator with a spectral parameter in the boundary condition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 252-258
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a7/
%G ru
%F ZVMMF_2016_56_2_a7
T. Sh. Abdullaev; I. M. Nabiev. An algorithm for reconstructing the Dirac operator with a spectral parameter in the boundary condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 252-258. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a7/

[1] Gasymov M. G., Levitan B. M., “Obratnaya zadacha dlya sistemy Diraka”, Dokl. AN SSSR, 167:5 (1966), 967–970 | MR | Zbl

[2] Marchenko V. A., Operatory Shturma–Liuvilya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[3] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[4] Kurbanov V. M., Ismailova A. I., “Svoistva kornevykh vektor-funktsii odnomernogo operatora Diraka”, Dokl. AN, 433:6 (2010), 736–740 | Zbl

[5] Kornev V. V., Khromov A. P., “Sistema Diraka s nedifferentsiruemym potentsialom i antiperiodicheskimi kraevymi usloviyami”, Izv. Sarat. un-ta. Ser. Matematika. Mekhanika. Informatika, 13:3 (2013), 28–35

[6] Savchuk A. M., Shkalikov A. A., Operator Diraka s kompleksnoznachnym summiruemym potentsialom, 21 Dec 2014, 34 pp., arXiv: 1412.6757v1 [math.SP]

[7] Gasymov M. G., Dzhabiev T. T., “Reshenie obratnoi zadachi po dvum spektram dlya uravneniya Diraka na konechnom otrezke”, Dokl. AN Azerb. SSR, 22:7 (1966), 3–6 | Zbl

[8] Malamud M. M., “Voprosy edinstvennosti v obratnykh zadachakh dlya sistem differentsialnykh uravnenii na konechnom intervale”, Tr. Mosk. mat. o-va, 60, 1999, 199–258 | MR | Zbl

[9] Watson B. A., “Inverse spectral problems for weighted Dirac systems”, Inverse Problems, 15 (1999), 793–805 | DOI | MR | Zbl

[10] Mochizuki R., Trooshin I., “Inverse problem for interior spectral data of the Dirac operator”, Comm. Korean Math. Soc., 16:3 (2001), 437–442 | MR

[11] Yurko V. A., “Obratnaya spektralnaya zadacha dlya singulyarnykh nesamosopryazhennykh differentsialnykh sistem”, Matem. cbornik, 195:12 (2004), 123–156 | DOI | Zbl

[12] Albeverio S., Hryniv R., Mykytyuk Ya., “Inverse spectral problems for Dirac operators with summable potentials”, Russian J. Math. Physics, 12:4 (2005), 406–423 | MR | Zbl

[13] Guseinov I. M., Lyatifova A. R., “Ob operatore preobrazovaniya dlya sistemy uravnenii Diraka s summiruemymi potentsialami”, Izv. Sarat. un-ta. Ser. Matematika. Mekhanika. Informatika, 11:1 (2011), 19–24

[14] Sat M., Panakhov E. S., Tas K., “Wellposedness of the inverse problem for Dirac operator”, Chinese J. of Math., 2013 (2013), Art. ID 279394 | DOI

[15] Mamedov Kh. R., Akcay O., “Inverse eigenvalue problem for a class of Dirac operators with discontinuous coefficient”, Boundary Value Probl., 110 (2014) | MR | Zbl

[16] Amirov R. Kh., Keskin B., Ozkan A. S., “Direct and inverse problems for the Dirac operator with a spectral parameter linearly contained in a boundary condition”, Ukrainian Math. J., 61:9 (2009), 1365–1379 | DOI | MR | Zbl

[17] Yang C.-F., Pivovarchik V. N., “Inverse nodal problem for Dirac system with spectral parameter in boundary conditions”, Complex Anal. Oper. Theory, 7 (2013), 1211–1230 | DOI | MR | Zbl

[18] Misyura T. V., “Kharakteristika spektrov periodicheskoi i antiperiodicheskoi kraevykh zadach, porozhdaemykh operatsiei Diraka, II”, Teoriya funktsii, funkts. analiz i ikh pril., 1979, no. 31, 102–109 | MR

[19] Korotyaev E., “Inverse problem and estimates for periodic Zakharov–Shabat systems”, J. Reine Angew. Math., 583 (2005), 87–115 | DOI | MR | Zbl

[20] Nabiev I. M., “Solution of a class of inverse problems for the Dirac operator”, Transactions of Acad. of sci. of Azerb. Ser. of phys.-tech. and math. sci., 21:1 (2001), 146–157 | MR | Zbl

[21] Nabiev I. M., “Characteristic of spectral data of Dirac operators”, Transactions of Acad. of sci. of Azerb. Ser. of phys.-tech. and math. sci., 24:7 (2004), 161–166 | MR | Zbl

[22] Nabiev I. M., “Reshenie obratnoi kvaziperiodicheskoi zadachi dlya sistemy Diraka”, Matem. zametki, 89:6 (2011), 885–893 | DOI | MR | Zbl

[23] Guseinov I. M., Nabiev I. M., “Obratnaya spektralnaya zadacha dlya puchkov differentsialnykh operatorov”, Matem. cbornik, 198:11 (2007), 47–66 | DOI | MR | Zbl

[24] Levin B. Ya., Tselye funktsii, Izd-vo MGU, M., 1971