Numerical methods for solving terminal optimal control problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 224-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton's method or Bellman's quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.
@article{ZVMMF_2016_56_2_a4,
     author = {A. Yu. Gornov and A. I. Tyatyushkin and E. A. Finkelshtein},
     title = {Numerical methods for solving terminal optimal control problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {224--237},
     year = {2016},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a4/}
}
TY  - JOUR
AU  - A. Yu. Gornov
AU  - A. I. Tyatyushkin
AU  - E. A. Finkelshtein
TI  - Numerical methods for solving terminal optimal control problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 224
EP  - 237
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a4/
LA  - ru
ID  - ZVMMF_2016_56_2_a4
ER  - 
%0 Journal Article
%A A. Yu. Gornov
%A A. I. Tyatyushkin
%A E. A. Finkelshtein
%T Numerical methods for solving terminal optimal control problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 224-237
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a4/
%G ru
%F ZVMMF_2016_56_2_a4
A. Yu. Gornov; A. I. Tyatyushkin; E. A. Finkelshtein. Numerical methods for solving terminal optimal control problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 224-237. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a4/

[1] Gornov A. Yu., Tyatyushkin A. I., Finkelshtein E., “Chislennye metody resheniya prikladnykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 53:12 (2013), 68–82

[2] Tyatyushkin A. I., Mnogometodnaya tekhnologiya optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 2006

[3] Tyatyushkin A. I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 1992 | MR

[4] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii, v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR

[5] Bellman R., Kalaba R., Kvazilinearizatsiya i nelineinye kraevye zadachi, Mir, M., 1968

[6] Junkins J. I., Turner J. D., “Optimal continuous torque attitude maneuvers”, AIAA/AAS Astrodynamics conference (Palo Alto, Calif., 1978)

[7] Borzov V. I., Igonina T. R., “O zadache poleta letatelnogo apparata na maksimalnuyu dalnost”, Izv. AN SSSR. Mekhan. tverdogo tela, 1982, no. 2, 20–24

[8] Petrov Yu. P., Optimalnoe upravlenie elektroprivodom, Energiya, L., 1971

[9] Finkelshtein E. A., Svinin M. M., “Chislennoe issledovanie zadachi optimalnogo upravleniya sfericheskim mobilnym robotom c trekhmernymi upravlyayuschimi vozdeistviyami”, Nelineinyi analiz i ekstremalnye zadachi, Tez. dokl. III Mezhdunar. shkoly-seminara (Irkutsk, 25 iyunya–1 iyulya 2012 g.), RIO IDSTU SO RAN, Irkutsk, 2012, 46