Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 208-223
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              An algorithm for solving a quadratic minimization problem on an ellipsoidal set in a Hilbert space is proposed. The algorithm is stable to nonuniform perturbations of the operators. A key condition for its application is that we know an estimate for the norm of the exact solution. Applications to boundary control problems for the one-dimensional wave equation are considered. Numerical results are presented.
            
            
            
          
        
      @article{ZVMMF_2016_56_2_a3,
     author = {A. A. Dryazhenkov and M. M. Potapov},
     title = {Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {208--223},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/}
}
                      
                      
                    TY - JOUR AU - A. A. Dryazhenkov AU - M. M. Potapov TI - Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 208 EP - 223 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/ LA - ru ID - ZVMMF_2016_56_2_a3 ER -
%0 Journal Article %A A. A. Dryazhenkov %A M. M. Potapov %T Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 208-223 %V 56 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/ %G ru %F ZVMMF_2016_56_2_a3
A. A. Dryazhenkov; M. M. Potapov. Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 208-223. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/
