Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 208-223

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for solving a quadratic minimization problem on an ellipsoidal set in a Hilbert space is proposed. The algorithm is stable to nonuniform perturbations of the operators. A key condition for its application is that we know an estimate for the norm of the exact solution. Applications to boundary control problems for the one-dimensional wave equation are considered. Numerical results are presented.
@article{ZVMMF_2016_56_2_a3,
     author = {A. A. Dryazhenkov and M. M. Potapov},
     title = {Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {208--223},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/}
}
TY  - JOUR
AU  - A. A. Dryazhenkov
AU  - M. M. Potapov
TI  - Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 208
EP  - 223
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/
LA  - ru
ID  - ZVMMF_2016_56_2_a3
ER  - 
%0 Journal Article
%A A. A. Dryazhenkov
%A M. M. Potapov
%T Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 208-223
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/
%G ru
%F ZVMMF_2016_56_2_a3
A. A. Dryazhenkov; M. M. Potapov. Numerical method for a quadratic minimization problem with an ellipsoidal constraint and an a priori estimate for the solution norm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 208-223. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a3/