Solution of the linear regression problem using matrix correction methods in the $l_1$ metric
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 202-207
Voir la notice de l'article provenant de la source Math-Net.Ru
The linear regression problem is considered as an improper interpolation problem. The metric $l_1$ is used to correct (approximate) all the initial data. A probabilistic justification of this metric in the case of the exponential noise distribution is given. The original improper interpolation problem is reduced to a set of a finite number of linear programming problems. The corresponding computational algorithms are implemented in MATLAB.
@article{ZVMMF_2016_56_2_a2,
author = {V. A. Gorelik and O. S. Trembacheva (Barkalova)},
title = {Solution of the linear regression problem using matrix correction methods in the $l_1$ metric},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {202--207},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/}
}
TY - JOUR AU - V. A. Gorelik AU - O. S. Trembacheva (Barkalova) TI - Solution of the linear regression problem using matrix correction methods in the $l_1$ metric JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 202 EP - 207 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/ LA - ru ID - ZVMMF_2016_56_2_a2 ER -
%0 Journal Article %A V. A. Gorelik %A O. S. Trembacheva (Barkalova) %T Solution of the linear regression problem using matrix correction methods in the $l_1$ metric %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 202-207 %V 56 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/ %G ru %F ZVMMF_2016_56_2_a2
V. A. Gorelik; O. S. Trembacheva (Barkalova). Solution of the linear regression problem using matrix correction methods in the $l_1$ metric. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 202-207. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/