@article{ZVMMF_2016_56_2_a2,
author = {V. A. Gorelik and O. S. Trembacheva (Barkalova)},
title = {Solution of the linear regression problem using matrix correction methods in the $l_1$ metric},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {202--207},
year = {2016},
volume = {56},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/}
}
TY - JOUR AU - V. A. Gorelik AU - O. S. Trembacheva (Barkalova) TI - Solution of the linear regression problem using matrix correction methods in the $l_1$ metric JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 202 EP - 207 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/ LA - ru ID - ZVMMF_2016_56_2_a2 ER -
%0 Journal Article %A V. A. Gorelik %A O. S. Trembacheva (Barkalova) %T Solution of the linear regression problem using matrix correction methods in the $l_1$ metric %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 202-207 %V 56 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/ %G ru %F ZVMMF_2016_56_2_a2
V. A. Gorelik; O. S. Trembacheva (Barkalova). Solution of the linear regression problem using matrix correction methods in the $l_1$ metric. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 202-207. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a2/
[1] Barkalova O. S., “Korrektsiya nesobstvennykh zadach lineinogo programmirovaniya v kanonicheskoi forme po minimaksnomu kriteriyu”, Zh. vychisl. matem. i matem. fiz., 52:12 (2012), 2178–2189 | MR | Zbl
[2] Vatolin A. A., “Approksimatsiya nesobstvennykh zadach lineinogo programmirovaniya po kriteriyu evklidovoi normy”, Zh. vychisl. matem. i matem. fiz., 24:12 (1984), 1907–1908 | Zbl
[3] Gorelik V. A., “Matrichnaya korrektsiya zadachi lineinogo programmirovaniya s nesovmestnoi sistemoi ogranichenii”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1697–1705 | MR | Zbl
[4] Gorelik V. A., Erokhin V. I., Optimalnaya matrichnaya korrektsiya nesovmestnykh sistem lineinykh algebraicheskikh uravnenii po minimumu evklidovoi normy, VTs RAN, M., 2004 | MR
[5] Gorelik V. A., Erokhin V. I., Pechenkin R. V., Chislennye metody korrektsii nesobstvennykh zadach lineinogo programmirovaniya i strukturnykh sistem uravnenii, VTs RAN, M., 2006 | MR
[6] Erokhin V. I., Krasnikov A. S., Khvostov M. N., “Minimalnye po evklidovoi norme matrichnye korrektsii zadach lineinogo programmirovaniya”, Avtomatika i telemekhanika, 2012, no. 2, 11–24
[7] Back A., “The matrix-restricted total least squares problem”, Signal Process, 87:10 (2007), 2303–2312 | DOI
[8] Golub G. H., Van Loan C. F., “An analysis of the total least squares problem”, SIAM J. Numer. Anal., 17:3 (1980), 883–893 | DOI | MR | Zbl
[9] Rosen J. B., Park H., Glick J., “Total least norm formulation and solution for strucured problems”, SIAM J. Matrix Anal. Appl., 17:1 (1996), 110–128 | DOI | MR
[10] Van Huffel S., Vandewale J., The total least squares problems: computational aspects and analysis, Frontiers in Applied Mathematics, 9, SIAM Publishing, Philadelphia, PA | MR
[11] Antipin A. S., Vasilev F. P., “Regulyarizovannyi metod s prognozom dlya resheniya variatsionnykh neravenstv s netochno zadannym mnozhestvom”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 796–804 | MR | Zbl
[12] Matrosov V. L., Gorelik V. A., Zhdanov S. A., Muraveva O. V., Ugolnikova B. Z., Teoreticheskie osnovy informatiki, Uchebnoe posobie dlya studentov vuzov, Izdatelskii tsentr “Akademiya”, M., 2009
[13] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fakty. Modeli, Fazis, M., 1998
[14] Gorelik V. A., Zolotova T. V., “Ob ekvivalentnosti printsipov optimalnosti investitsionnogo portfelya”, Nauchno-issledovatelskii finansovyi institut. Finansovyi zhurnal, 2014, no. 2(20), 67–74