@article{ZVMMF_2016_56_2_a14,
author = {M. K. Kerimov},
title = {{\CYRR}{\cyre}{\cyrc}{\cyre}{\cyrn}{\cyrz}{\cyri}{\cyrya} {\cyrn}{\cyra} {\cyrk}{\cyrn}{\cyri}{\cyrg}{\cyru} {{\CYRV}.} {{\CYRG}.~{\CYRK}{\cyro}{\cyrr}{\cyrn}{\cyre}{\cyre}{\cyrv}{\cyra}} {\cyri} {{\CYRU}.~{\CYRL}{\cyra}{\cyrn}{\cyrg}{\cyre}{\cyrr}{\cyra}} {{\textquotedblleft}{\CYRM}{\cyre}{\cyrt}{\cyro}{\cyrd}{\cyrery}} {\cyrd}{\cyre}{\cyrk}{\cyro}{\cyrm}{\cyrp}{\cyro}{\cyrz}{\cyri}{\cyrc}{\cyri}{\cyri} {\cyro}{\cyrb}{\cyrl}{\cyra}{\cyrs}{\cyrt}{\cyri} {\cyrt}{\cyri}{\cyrp}{\cyra} {{\CYRD}{\cyri}{\cyrr}{\cyri}{\cyrh}{\cyrl}{\cyre}{\textendash}{\CYRD}{\cyri}{\cyrr}{\cyri}{\cyrh}{\cyrl}{\cyre}} {\cyrd}{\cyrl}{\cyrya} {\cyrerev}{\cyrl}{\cyrl}{\cyri}{\cyrp}{\cyrt}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}, $h$ {\cyri} $hp$ {\cyrk}{\cyro}{\cyrn}{\cyre}{\cyrch}{\cyrn}{\cyro}-{\cyrerev}{\cyrl}{\cyre}{\cyrm}{\cyre}{\cyrn}{\cyrt}{\cyrn}{\cyrery}{\cyre} {\cyrd}{\cyri}{\cyrs}{\cyrk}{\cyrr}{\cyre}{\cyrt}{\cyri}{\cyrz}{\cyra}{\cyrc}{\cyri}{\cyri}{\textquotedblright}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {341--344},
year = {2016},
volume = {56},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a14/}
}
TY - JOUR AU - M. K. Kerimov TI - Рецензия на книгу В. Г. Корнеева и У. Лангера “Методы декомпозиции области типа Дирихле–Дирихле для эллиптических задач, $h$ и $hp$ конечно-элементные дискретизации” JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 341 EP - 344 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a14/ LA - ru ID - ZVMMF_2016_56_2_a14 ER -
%0 Journal Article %A M. K. Kerimov %T Рецензия на книгу В. Г. Корнеева и У. Лангера “Методы декомпозиции области типа Дирихле–Дирихле для эллиптических задач, $h$ и $hp$ конечно-элементные дискретизации” %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 341-344 %V 56 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a14/ %G ru %F ZVMMF_2016_56_2_a14
M. K. Kerimov. Рецензия на книгу В. Г. Корнеева и У. Лангера “Методы декомпозиции области типа Дирихле–Дирихле для эллиптических задач, $h$ и $hp$ конечно-элементные дискретизации”. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 341-344. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a14/
[1] Schwartz H., “Über einige Abbildungseigenschaften”, J. Reine und Angew. Math., 70 (1869), 105–120 | DOI
[2] Sobolev S. L., “Algoritm Shvartsa v teorii uprugosti”, Dokl. AN SSSR, 4:6 (1936), 243–246 | Zbl
[3] Matsokin A. M., Nepomnyaschikh S. V., “Alternativnyi metod Shvartsa v podprostranstve”, Izvestiya vuzov. Matematika, 1985, no. 10, 61–66
[4] Dryja M., Widlund O., An additive variant of the Schwartz alternative method for the case of many subdomains, Technical Report TR-339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, New York, 1987
[5] Lions J., “On the Schwartz alternating methods. I”, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, France, January 7–9, 1987, eds. R. Glowinski, G. Golub, G. Meurant, J. Periaux, SIAM, Philadelphia, PA, 1988, 1–42 | MR
[6] Lions J., “On the Schwartz alternating methods. II”, Second International Symposium on Domain Decomposition Methods for Partial Differential Equations (Los Angeles, California, January 14–16, 1988), eds. T. Chan, R. Glowinski, J. Perian, O. Widlund, SIAM, Philadelphia, PA, 1989, 47–70 | MR
[7] Lions J., “On the Schwartz alternating methods. III”, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, Texas, March 20–22, 1989), eds. T. Chan, R. Glowinski, J. Perian, O. Widlund, SIAM, Philadelphia, PA, 1990, 202–229 | MR
[8] Argyris J., Kelsu S., Energy Theorem and Structural Analys, Plenium Press, London, 1960
[9] Przemieniecki J., “Matrix Structural Analysis of Substructures”, AIAA Journal, 1:1 (1963), 138–147 | DOI
[10] Bramble J., Pasciak J., Schatz A., “The construction of preconditioners for elliptic problems by substructuring. I”, Math. of Comput., 47:175 (1986), 103–134 | DOI | MR | Zbl
[11] Bramble J., Pasciak J., Schatz A., “The construction of preconditioners for elliptic problems by substructuring. II”, Math. of Comput., 49:189 (1987), 1–16 | DOI | MR | Zbl
[12] Bramble J., Pasciak J., Schatz A., “The construction of preconditioners for elliptic problems by substructuring. III”, Math. of Comput., 51:184 (1988), 415–430 | MR | Zbl
[13] Bramble J., Pasciak J., Schatz A., “The construction of preconditioners for elliptic problems by substructuring. IV”, Math. of Comput., 53:187 (1989), 1–24 | MR | Zbl