@article{ZVMMF_2016_56_2_a13,
author = {A. V. Kel'manov and V. I. Khandeev},
title = {Fully polynomial-time approximation scheme for a special case of a quadratic {Euclidean} 2-clustering problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {332--340},
year = {2016},
volume = {56},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a13/}
}
TY - JOUR AU - A. V. Kel'manov AU - V. I. Khandeev TI - Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 332 EP - 340 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a13/ LA - ru ID - ZVMMF_2016_56_2_a13 ER -
%0 Journal Article %A A. V. Kel'manov %A V. I. Khandeev %T Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 332-340 %V 56 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a13/ %G ru %F ZVMMF_2016_56_2_a13
A. V. Kel'manov; V. I. Khandeev. Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 332-340. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a13/
[1] Bern M., Eppstein D., “Approximation algorithms for geometric problems”, Approximation algorithms for NP-hard problems, eds. Hochbaum D. S., PWS Publishing Co., Boston, 1997, 296–345
[2] James G., Witten D., Hastie T., Tibshirani R., An Introduction to statistical learning, Springer Science+Business Media, LLC, New York, 2013 | MR | Zbl
[3] Bishop M. C., Pattern recognition and machine learning, Springer Science+Business Media, LLC, New York, 2006 | MR | Zbl
[4] Flach P., Machine learning: the art and science of algorithms that make sense of data, Cambridge University Press, New York, 2012 | MR | Zbl
[5] Steger C., Ulrich M., Wiedemann C., Machine vision algorithms and applications, Cambridge University Press, New York, 2010
[6] Kaiser S., Biclustering: methods, software and application, Munchen, 2011
[7] Jain A. K., “Data clustering: 50 years beyond $k$-means”, Pattern Recognition Letters, 31 (2010), 651–666 | DOI
[8] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. AN, 421:5 (2008), 590–592 | Zbl
[9] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zh. industr. matematiki, 9:1(25) (2006), 55–74
[10] Gimadi E. Kh., Kel'manov A. V., Kel'manova M. A., Khamidullin S. A., “A Posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognition and Image Analysis, 18:1 (2008), 30–42 | DOI | MR
[11] Kelmanov A. V., “Problema off-line obnaruzheniya povtoryayuschegosya fragmenta v chislovoi posledovatelnosti”, Tr. In-t matem. i mekhan. UrO RAN, 14, no. 2, 2008, 81–88 | Zbl
[12] Dolgushev A. V., Kelmanov A. V., “Priblizhennyi algoritm resheniya odnoi zadachi klasternogo analiza”, Diskretnyi analiz i issledovanie operatsii, 18:2 (2011), 29–40
[13] Kelmanov A. V., Khandeev V. I., “Randomizirovannyi algoritm dlya odnoi zadachi dvukhklasternogo razbieniya mnozhestva vektorov”, Zh. vychisl. matem. i matem. fiz., 55:2 (2015), 335–344 | DOI | MR
[14] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Machine Learning, 75:2 (2009), 245–248 | DOI
[15] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5-th Berkeley Symp. of Mathematical Statistics and Probability, v. 1, Univ. of California Press, Berkeley, 1967, 281–297 | MR | Zbl
[16] Rao M., “Cluster analysis and mathematical programming”, J. Amer. Statist. Assoc., 66 (1971), 622–626 | DOI | Zbl
[17] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 2059–2065 | MR | Zbl
[18] Kelmanov A. V., “O slozhnosti nekotorykh zadach analiza dannykh”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 2045–2051 | MR | Zbl
[19] Kelmanov A. V., “O slozhnosti nekotorykh zadach klasternogo analiza”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 2106–2112 | MR | Zbl
[20] Baburin A. E., Gimadi E. X., Glebov N. I., Pyatkin A. V., “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 14:1 (2007), 32–42 | Zbl
[21] Kelmanov A. V., Pyatkin A. V., “NP-polnota nekotorykh zadach vybora podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 17:5 (2010), 37–45 | Zbl
[22] Kelmanov A. V., Khandeev V. I., “Tochnyi psevdopolinomialnyi algoritm dlya odnoi zadachi dvukhklasternogo razbieniya mnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 22:4 (2015), 50–65
[23] Kelmanov A. V., Khandeev V. I., “Polinomialnyi algoritm s otsenkoi tochnosti 2 dlya resheniya odnoi zadachi klasternogo analiza”, Diskretnyi analiz i issledovanie operatsii, 20:4 (2013), 36–45 | MR
[24] Kelmanov A. V., Pyatkin A. V., “Ob odnom variante zadachi vybora podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 15:5 (2008), 20–34
[25] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979 | MR | Zbl
[26] Dolgushev A. V., Kelmanov A. V., Shenmaier V. V., “Polinomialnaya approksimatsionnaya skhema dlya odnoi zadachi razbieniya konechnogo mnozhestva na dva klastera”, Tr. Instituta matematiki i mekhaniki UrO RAN, 21, no. 3, 2015, 100–109
[27] Vazirani V. V., Approximation Algorithms, Springer, Berlin–Heidelberg–New York, 2001 | MR
[28] Kelmanov A. V., Romanchenko S. M., “FPTAS dlya odnoi zadachi poiska podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 21:3 (2014), 41–52 | MR
[29] Wirth I., Algorithms+data structures=programs, Prentice Hall, New Jersey, 1976 | MR | Zbl