@article{ZVMMF_2016_56_2_a10,
author = {K. N. Volkov and V. N. Emel'yanov and I. V. Teterina},
title = {Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {283--300},
year = {2016},
volume = {56},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a10/}
}
TY - JOUR AU - K. N. Volkov AU - V. N. Emel'yanov AU - I. V. Teterina TI - Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 283 EP - 300 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a10/ LA - ru ID - ZVMMF_2016_56_2_a10 ER -
%0 Journal Article %A K. N. Volkov %A V. N. Emel'yanov %A I. V. Teterina %T Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 283-300 %V 56 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a10/ %G ru %F ZVMMF_2016_56_2_a10
K. N. Volkov; V. N. Emel'yanov; I. V. Teterina. Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 283-300. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a10/
[1] Brandt A., “Guide to multigrid development”, Lect. Notes in Math., 960, 1982, 220–312 | DOI | MR | Zbl
[2] Wesseling P., An introduction to mutigrid methods, Wiley, Chichester, 1992 | MR
[3] Pierce N. A., Giles M. B., Jameson A., Martinelli L., Accelerating three-dimensional Navier–Stokes calculations, AIAA Paper No 97-1953, 1997
[4] Volkov K. N., “Blochnoe predobuslovlivanie uravnenii Eilera i Nave–Stoksa pri modelirovanii nizkoskorostnykh techenii na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1868–1884 | MR | Zbl
[5] Volkov K. N., “Mnogosetochnye tekhnologii dlya resheniya zadach gazovoi dinamiki na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 1938–1952 | MR | Zbl
[6] Mavriplis D. J., “An assessment of linear versus nonlinear multigrid methods for unstructured mesh solvers”, J. Comput. Phys., 175:1 (2002), 302–325 | DOI | Zbl
[7] Brandt A., “Multi-level adaptive solutions to boundary value problems”, Math. Comput., 31:138 (1977), 333–390 | DOI | MR | Zbl
[8] Trottenberg U., Oosterlee C., Schüller A., Multigrid, Acad. Press, London, 2001 | MR | Zbl
[9] Wesseling P., Oosterlee C. W., “Geometric multigrid with applications to computational of fluid dynamics”, J. Comput. Appl. Math., 128:1–2 (2001), 311–334 | DOI | MR | Zbl
[10] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl
[11] Brannick J., Brezina M., Falgout R., Manteuffel T., McCormick S., Ruge J., Sheehan B., Xu J., Zikatanov L., “Extending the applicability of multigrid methods”, J. Phys: Conference Series, 46 (2006), 443–452 | DOI | MR
[12] Hackbusch W., Multigrid method and application, Springer-Verlag, Berlin, 1985 | MR
[13] Jameson A., “Solution of the Euler equations by a multigrid method”, Appl. Math. Comput., 13:3–4 (1983), 327–356 | DOI | MR
[14] Jameson A., “Analysis and design of numerical schemes for gas dynamics: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence”, Internat. J. Comput. Fluid Dynamics, 4:3–4 (1995), 171–218 | DOI
[15] Crumpton P. I., Moinier P., Giles M. B., “An unstructured algorithm for high Reynolds number flows on highly stretched grids”, Numer. Meth. Laminar and Turbulent Flows, eds. C. Taylor, J. T. Cross, Pineridge Press, 1997, 561–572
[16] Müller J.-D., Giles M. B., “Edge-based multigrid schemes for hybrid grids”, Numerical Meth. Fluid Dynamics, 6 (1998), 425–432
[17] Cleary A. J., Falgout R. D., Henson V. E., Jones J. E., Manteu T. A., McCormick S. F., Miranda G. N., Ruge J. W., “Robustness and scalability of algebraic multigrid”, SIAM J. Sci. Statistical Comput., 21:6 (2000), 1886–1908 | DOI | MR | Zbl
[18] Ruge J., Stüben K., “Algebraic multigrid (AMG)”, Multigrid Methods, Frontiers in Appl. Math., 3, ed. S. F. McCormick, SIAM, Philadelphia, 1987, 73–130 | MR
[19] Stüben K., “A review of algebraic multigrid”, J. Computat. Appl. Math., 128:1–2 (2001), 281–309 | DOI | MR | Zbl
[20] Stüben K., “An introduction to algebraic multigrid”: U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Academic Press, London, 2001, 413–532 | MR
[21] Yang U. M., “Parallel algebraic multigrid methods — high performance preconditioners”, Numerical Solution of Partial Differential Equations on Parallel Computers, Lecture Notes in Computational Science and Engineering, 51, eds. A. M. Bruaset, A. Tveito, Springer-Verlag, Berlin, 2006, 209–236 | DOI | MR | Zbl
[22] Volkov K. N., “Diskretizatsiya uravnenii Nave-Stoksa na nestrukturirovannoi setke pri pomoschi metoda kontrolnogo ob'ema i raznostnykh skhem povyshennoi razreshayuschei sposobnosti”, Zh. vychisl. matem. i matem. fiz., 48 (2008), 1250–1273 | MR
[23] AGARD Fluid Dynamics Panel. Test cases for inviscid flow field methods, AGARD Advisory Reports No AR-211, 1986