Principal vectors of a nonlinear finite-dimensional eigenvalue problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 187-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a finite-dimensional linear space, consider a nonlinear eigenvalue problem analytic with respect to its spectral parameter. The notion of a principal vector for such a problem is examined. For a linear eigenvalue problem, this notion is identical to the conventional definition of principal vectors. It is proved that the maximum number of linearly independent eigenvectors combined with principal (associated) vectors in the corresponding chains is equal to the multiplicity of an eigenvalue. A numerical method for constructing such chains is given.
@article{ZVMMF_2016_56_2_a0,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {Principal vectors of a nonlinear finite-dimensional eigenvalue problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {187--192},
     year = {2016},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a0/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - Principal vectors of a nonlinear finite-dimensional eigenvalue problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 187
EP  - 192
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a0/
LA  - ru
ID  - ZVMMF_2016_56_2_a0
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T Principal vectors of a nonlinear finite-dimensional eigenvalue problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 187-192
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a0/
%G ru
%F ZVMMF_2016_56_2_a0
A. A. Abramov; L. F. Yukhno. Principal vectors of a nonlinear finite-dimensional eigenvalue problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 2, pp. 187-192. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_2_a0/

[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Izd-vo “Lan”, SPb., 2002

[2] Naimark M. A., Normirovannye koltsa, Fizmatlit, M., 2010 | MR

[3] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Metod resheniya nelineinoi nesamosopryazhennoi spektralnoi zadachi dlya nekotorykh sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 104–110 | MR | Zbl

[4] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya sistemy obyknovennnykh differentsialnykh uravnenii s nelokalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 231–236 | MR | Zbl

[5] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya singulyarnoi sistemy obyknovennnykh differentsialnykh uravnenii s nelokalnym usloviem”, Differents. ur-niya, 49:7 (2013), 945–949 | Zbl