Numerical simulation of the process of nonequilibrium counterflow capillary imbibition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 125-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of the Galerkin method of solving the Cauchy–Dirichlet problem for the Barenbratt–Gilman equation is studied. On the basis of theoretical results, a numerical algorithm for this problem is developed. Results of a numerical experiment are presented.
@article{ZVMMF_2016_56_1_a7,
     author = {E. A. Bogatyreva and N. A. Manakova},
     title = {Numerical simulation of the process of nonequilibrium counterflow capillary imbibition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {125--132},
     year = {2016},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a7/}
}
TY  - JOUR
AU  - E. A. Bogatyreva
AU  - N. A. Manakova
TI  - Numerical simulation of the process of nonequilibrium counterflow capillary imbibition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 125
EP  - 132
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a7/
LA  - ru
ID  - ZVMMF_2016_56_1_a7
ER  - 
%0 Journal Article
%A E. A. Bogatyreva
%A N. A. Manakova
%T Numerical simulation of the process of nonequilibrium counterflow capillary imbibition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 125-132
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a7/
%G ru
%F ZVMMF_2016_56_1_a7
E. A. Bogatyreva; N. A. Manakova. Numerical simulation of the process of nonequilibrium counterflow capillary imbibition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a7/

[1] Barenblatt G. I., Gilman A. A., “Matematicheskaya model neravnovesnoi protivotochnoi kapillyarnoi propitki”, Inzhenerno-fizich. zh., 52:3 (1987), 456–461

[2] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[3] Sviridyuk G. A., “Odna zadacha dlya obobschennogo filtratsionnogo uravneniya Bussineska”, Izv. vuzov. Matem., 1989, no. 2, 55–61

[4] Manakova N. A., Bogatyreva E. A., “O reshenii zadachi Dirikhle–Koshi dlya uravneniya Barenblatta–Gilmana”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matem., 7 (2014), 52–60 | Zbl

[5] Bogatyreva E. A., Semenova I. N., “On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 7:4 (2014), 113–119 | Zbl

[6] Korpusov M. O., “Razrushenie resheniya psevdoparabolicheskogo uravneniya s proizvodnoi po vremeni ot nelineinogo ellipticheskogo operatora”, Zh. vychisl. matem. i matem. fiz., 42:12 (2002), 1788–1795 | MR | Zbl

[7] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[8] Sviridyuk G. A., Sukacheva T. G., “O galerkinskikh priblizheniyakh singulyarnykh nelineinykh uravnenii tipa Soboleva”, Izv. vuzov. Matem., 1989, no. 10, 44–47 | MR

[9] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[10] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR