Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 113-123
Voir la notice de l'article provenant de la source Math-Net.Ru
Locally one-dimensional difference schemes are considered as applied to a fractional diffusion equation with variable coefficients in a domain of complex geometry. They are proved to be stable and uniformly convergent for the problem under study.
@article{ZVMMF_2016_56_1_a5,
author = {A. K. Bazzaev and M. Kh. Shkhanukov-Lafishev},
title = {Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {113--123},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/}
}
TY - JOUR AU - A. K. Bazzaev AU - M. Kh. Shkhanukov-Lafishev TI - Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 113 EP - 123 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/ LA - ru ID - ZVMMF_2016_56_1_a5 ER -
%0 Journal Article %A A. K. Bazzaev %A M. Kh. Shkhanukov-Lafishev %T Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 113-123 %V 56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/ %G ru %F ZVMMF_2016_56_1_a5
A. K. Bazzaev; M. Kh. Shkhanukov-Lafishev. Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 113-123. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/