@article{ZVMMF_2016_56_1_a5,
author = {A. K. Bazzaev and M. Kh. Shkhanukov-Lafishev},
title = {Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {113--123},
year = {2016},
volume = {56},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/}
}
TY - JOUR AU - A. K. Bazzaev AU - M. Kh. Shkhanukov-Lafishev TI - Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 113 EP - 123 VL - 56 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/ LA - ru ID - ZVMMF_2016_56_1_a5 ER -
%0 Journal Article %A A. K. Bazzaev %A M. Kh. Shkhanukov-Lafishev %T Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 113-123 %V 56 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/ %G ru %F ZVMMF_2016_56_1_a5
A. K. Bazzaev; M. Kh. Shkhanukov-Lafishev. Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 113-123. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/
[1] Dinariev O. Yu., “Filtratsiya v treschinovatoi srede s fraktalnoi geometriei treschin”, Izv. RAN. Mekhan. zhidkosti i gaza, 1990, no. 5, 66–70
[2] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. AN, 361:6 (1998), 755–758 | Zbl
[3] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Avtovolnovye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. AN, 369:3 (1999), 332–333 | Zbl
[4] Tarasov V. E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii in-t kompyuternykh issledovanii, M.–Izhevsk, 2011, 568 pp.
[5] Uchaikin V. V., “Anomalnaya diffuziya i drobno-ustoichivye raspredeleniya”, Zh. eksperim. i teor. fiz., 124:3 (2003), 903–920
[6] Kochubei A. Yu., “Diffuziya drobnogo poryadka”, Differents. ur-niya, 26 (1990), 660–670 | MR
[7] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. AMAN, 2:1 (1996), 43–45
[8] Barenblatt G. I., Zheltov Yu. P., “Ob osnovnykh uravneniyakh filtratsii zhidkosti v treschinovatykh porodakh”, Dokl. AN SSSR, 132:3 (1960), 545–548 | Zbl
[9] Higmatylin P. P., “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status Solidi B, 133 (1986), 425–430 | DOI
[10] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884
[11] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003, 35 pp.
[12] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurkov Yu. P., “Pryamye zadachi klassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130; Матем. физ., 8:3 (1968), 679–684 | MR
[13] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | MR | Zbl
[14] Bazzaev A. K., Shkhanukov M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 50:7 (2010), 1200–1208 | MR | Zbl
[15] Bazzaev A. K., Mambetova A. B., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya teploprovodnosti drobnogo poryadka s sosredotochennoi teploemkostyu”, Zh. vychisl. matem. i matem. fiz., 52:9 (2012), 1656–1665 | Zbl
[16] Bazzaev A. K., “Raznostnye skhemy dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami tretego roda v mnogomernoi oblasti”, Ufimskii matem. zhurnal, 5:1 (2013), 11–16
[17] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math., 219 (2012), 3938–3946 | MR | Zbl
[18] Diethelm K., Walz G., “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl
[19] Diethelm K., Ford N. J., “Analysis of fractional differential equations”, J. Math. Analys. Appl., 265 (2002), 229–248 | DOI | MR | Zbl
[20] Povstenko Y., “Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under robin boundary condition”, Eur. Phys. J.-Spec., 222:8 (2013), 1767–1777 | DOI | MR
[21] Povstenko Yu., “Time-fractional heat conduction in an infinite medium with a spherical hole under robin boundary condition fract”, Calc. Appl. Anbalys., 16:2 (2013), 354–369 | MR | Zbl
[22] Tadjeran Ch., Meerschaert M., Scheffler H., “A second-order accurate numerical approximation for the fractional diffusion equation”, J. Comput. Phys., 213 (2006), 205–213 | DOI | MR | Zbl
[23] Bechchohra M., Hamani S., Ntouyas S. K., “Boundary value problems for differential equations with fractional order”, Surveys in Math. Applications, 3 (2008), 1–12 | MR
[24] Bandrowski B., Karczewska A., Rozmej P., “Numerical solutions to integral equations equivalent to differential equations with fractional time”, Int. J. Appl. Math. Comput. Sci., 20:2 (2010), 261–269 | DOI | MR | Zbl
[25] Rozmej P., Karczewska A., “Numerical solutions to integrodifferential equations which interpolate heat and wave”, Internat. J. Different. Equat. Applicat., 10:1 (2005), 15–27 | MR | Zbl
[26] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR
[27] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973