Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 113-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Locally one-dimensional difference schemes are considered as applied to a fractional diffusion equation with variable coefficients in a domain of complex geometry. They are proved to be stable and uniformly convergent for the problem under study.
@article{ZVMMF_2016_56_1_a5,
     author = {A. K. Bazzaev and M. Kh. Shkhanukov-Lafishev},
     title = {Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {113--123},
     year = {2016},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/}
}
TY  - JOUR
AU  - A. K. Bazzaev
AU  - M. Kh. Shkhanukov-Lafishev
TI  - Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 113
EP  - 123
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/
LA  - ru
ID  - ZVMMF_2016_56_1_a5
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%A M. Kh. Shkhanukov-Lafishev
%T Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 113-123
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/
%G ru
%F ZVMMF_2016_56_1_a5
A. K. Bazzaev; M. Kh. Shkhanukov-Lafishev. Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 113-123. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a5/

[1] Dinariev O. Yu., “Filtratsiya v treschinovatoi srede s fraktalnoi geometriei treschin”, Izv. RAN. Mekhan. zhidkosti i gaza, 1990, no. 5, 66–70

[2] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. AN, 361:6 (1998), 755–758 | Zbl

[3] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Avtovolnovye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. AN, 369:3 (1999), 332–333 | Zbl

[4] Tarasov V. E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii in-t kompyuternykh issledovanii, M.–Izhevsk, 2011, 568 pp.

[5] Uchaikin V. V., “Anomalnaya diffuziya i drobno-ustoichivye raspredeleniya”, Zh. eksperim. i teor. fiz., 124:3 (2003), 903–920

[6] Kochubei A. Yu., “Diffuziya drobnogo poryadka”, Differents. ur-niya, 26 (1990), 660–670 | MR

[7] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. AMAN, 2:1 (1996), 43–45

[8] Barenblatt G. I., Zheltov Yu. P., “Ob osnovnykh uravneniyakh filtratsii zhidkosti v treschinovatykh porodakh”, Dokl. AN SSSR, 132:3 (1960), 545–548 | Zbl

[9] Higmatylin P. P., “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status Solidi B, 133 (1986), 425–430 | DOI

[10] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884

[11] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003, 35 pp.

[12] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurkov Yu. P., “Pryamye zadachi klassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130; Матем. физ., 8:3 (1968), 679–684 | MR

[13] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | MR | Zbl

[14] Bazzaev A. K., Shkhanukov M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 50:7 (2010), 1200–1208 | MR | Zbl

[15] Bazzaev A. K., Mambetova A. B., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya teploprovodnosti drobnogo poryadka s sosredotochennoi teploemkostyu”, Zh. vychisl. matem. i matem. fiz., 52:9 (2012), 1656–1665 | Zbl

[16] Bazzaev A. K., “Raznostnye skhemy dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami tretego roda v mnogomernoi oblasti”, Ufimskii matem. zhurnal, 5:1 (2013), 11–16

[17] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math., 219 (2012), 3938–3946 | MR | Zbl

[18] Diethelm K., Walz G., “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl

[19] Diethelm K., Ford N. J., “Analysis of fractional differential equations”, J. Math. Analys. Appl., 265 (2002), 229–248 | DOI | MR | Zbl

[20] Povstenko Y., “Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under robin boundary condition”, Eur. Phys. J.-Spec., 222:8 (2013), 1767–1777 | DOI | MR

[21] Povstenko Yu., “Time-fractional heat conduction in an infinite medium with a spherical hole under robin boundary condition fract”, Calc. Appl. Anbalys., 16:2 (2013), 354–369 | MR | Zbl

[22] Tadjeran Ch., Meerschaert M., Scheffler H., “A second-order accurate numerical approximation for the fractional diffusion equation”, J. Comput. Phys., 213 (2006), 205–213 | DOI | MR | Zbl

[23] Bechchohra M., Hamani S., Ntouyas S. K., “Boundary value problems for differential equations with fractional order”, Surveys in Math. Applications, 3 (2008), 1–12 | MR

[24] Bandrowski B., Karczewska A., Rozmej P., “Numerical solutions to integral equations equivalent to differential equations with fractional time”, Int. J. Appl. Math. Comput. Sci., 20:2 (2010), 261–269 | DOI | MR | Zbl

[25] Rozmej P., Karczewska A., “Numerical solutions to integrodifferential equations which interpolate heat and wave”, Internat. J. Different. Equat. Applicat., 10:1 (2005), 15–27 | MR | Zbl

[26] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[27] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973