Finite-difference methods for solving loaded parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 99-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Loaded partial differential equations are solved numerically. For illustrative purposes, a boundary value problem for a parabolic equation with various point loads is considered. By applying difference approximations, the problems are reduced to systems of algebraic equations of special structure, which are solved using a parametric representation involving solutions of auxiliary linear systems with tridiagonal matrices. Numerical results are presented and analyzed.
@article{ZVMMF_2016_56_1_a4,
     author = {V. M. Abdullayev and K. R. Aida-zade},
     title = {Finite-difference methods for solving loaded parabolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {99--112},
     year = {2016},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a4/}
}
TY  - JOUR
AU  - V. M. Abdullayev
AU  - K. R. Aida-zade
TI  - Finite-difference methods for solving loaded parabolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 99
EP  - 112
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a4/
LA  - ru
ID  - ZVMMF_2016_56_1_a4
ER  - 
%0 Journal Article
%A V. M. Abdullayev
%A K. R. Aida-zade
%T Finite-difference methods for solving loaded parabolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 99-112
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a4/
%G ru
%F ZVMMF_2016_56_1_a4
V. M. Abdullayev; K. R. Aida-zade. Finite-difference methods for solving loaded parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 99-112. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a4/

[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shkola, M., 1995, 305 pp.

[2] Nakhusheva V. A., Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006, 173 pp. | MR

[3] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012, 232 pp.

[4] Nakhushev A. M., Borisov V. N., “Kraevye zadachi dlya nagruzhennykh parabolicheskikh uravnenii i ikh prilozheniya k prognozu urovnya gruntovykh vod”, Differents. ur-niya, 13:1 (1977), 105–110 | MR | Zbl

[5] Abdullaev V. M., Aida-zade K. R., “O chislennom reshenii nagruzhennykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1585–1595 | MR

[6] Anokhin Yu. A., Gorstko A. B., Dameschek L. Yu. i dr., Matematicheskie modeli i metody upravleniya krupnomasshtabnym vodnym ob'ektom, Nauka, Novosibirsk, 1987

[7] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004, 504 pp. | MR

[8] Aida-zade K. R., Abdullaev V. M., “Ob odnom podkhode k sintezu upravleniya protsessami s raspredelennymi parametrami”, Avtomat. i telemekhan., 2012, no. 9, 3–19 | MR

[9] Kozhanov A. I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zh. vychisl. matem. i matem. fiz., 44:4 (2004), 694–716 | MR | Zbl

[10] Khudalov M. Z., “Nelokalnaya kraevaya zadacha dlya nagruzhennogo uravneniya parabolicheskogo tipa”, Vladikavkazskii matem. zhurnal, 4:4 (2002), 59–64 | MR | Zbl

[11] Dikinov Kh. Zh., Kerefov A. A., Nakhushev A. M., “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya teploprovodnosti”, Differents. ur-niya, 12:1 (1976), 77–179

[12] Alikhanov A. A., Berezkov A. M., Shkhanukov-Lafishev M. Kh., “Kraevye zadachi dlya nekotorykh klassov nagruzhennykh differentsialnykh uravnenii i raznostnye metody ikh chislennoi realizatsii”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1619–1628 | MR

[13] Kerefov A. A., Shkhanukov-Lafishev M. Kh., Kuliev R. S., “Kraevye zadachi dlya nagruzhennogo uravneniya teploprovodnosti s nelokalnymi usloviyami tipa Steklova”, Neklassicheskie uravneniya matem. fiziki, Mezhdunar. seminar, posvyaschennyi 60-letiyu so dnya rozhdeniya prof. V. N. Vragova (Novosibirsk, 3–5 oktyabrya 2005 g.)

[14] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[15] Godunov C. K., Ryabenkii B. C., Vvedenie v teoriyu raznostnykh skhem, Fizmatgiz, M., 1962 | MR

[16] Bondarev E. A., Voevodin A. F., “Raznostnyi metod resheniya nachalno-kraevykh zadach dlya nagruzhennykh differentsialnykh i integro-differentsialnykh uravnenii”, Differents. ur-niya, 36:11 (2000), 1560–1562 | MR | Zbl

[17] Bondarev E. A., Voevodin A. F., Katyshev V. V., Petlina A. V., “Chislennyi metod resheniya nachalno-kraevoi zadachi s nelokalnym granichnym usloviem”, Obratnye zadachi i informatsionnye tekhnologii, 1:2 (2003), 31–40

[18] Dzhenaliev M. T., “Optimalnoe upravlenie lineinymi nagruzhennymi parabolicheskimi uravneniyami”, Differents. ur-niya, 25:4 (1989), 641–651 | MR | Zbl

[19] Abdullaev V. M., Aida-zade K. R., “Chislennye reshenie zadach optimalnogo upravleniya nagruzhennymi sosredotochennymi sistemami”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1566–1581 | MR

[20] Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya nagruzhennogo uravneniya teploprovodnosti s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1223–1231 | MR | Zbl

[21] Rothe E., “Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben”, Math. Ann., 102:1 (1930), 650–670 | DOI | MR | Zbl

[22] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[23] Abdullaev V. M., “O primenenii metoda pryamykh dlya kraevoi zadachi s nelokalnymi usloviyami otnositelno nagruzhennogo parabolicheskogo uravneniya”, Izvestiya NAN Azerbaidzhana. Seriya FTMN, 28:3 (2008), 76–81 | MR