@article{ZVMMF_2016_56_1_a3,
author = {T. A. Belkina and N. B. Konyukhova and S. V. Kurochkin},
title = {Dynamical insurance models with investment: {Constrained} singular problems for integrodifferential equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {47--98},
year = {2016},
volume = {56},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/}
}
TY - JOUR AU - T. A. Belkina AU - N. B. Konyukhova AU - S. V. Kurochkin TI - Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 47 EP - 98 VL - 56 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/ LA - ru ID - ZVMMF_2016_56_1_a3 ER -
%0 Journal Article %A T. A. Belkina %A N. B. Konyukhova %A S. V. Kurochkin %T Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 47-98 %V 56 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/ %G ru %F ZVMMF_2016_56_1_a3
T. A. Belkina; N. B. Konyukhova; S. V. Kurochkin. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 47-98. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/
[1] Grandell J., Aspects of Risk Theory, Springer, Berlin–New York, 1991 | MR | Zbl
[2] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007
[3] Bauerc N., Gerber X., Dzhans D., Nesbitt S., Khikman Dzh., Aktuarnaya matematika, Yanus-K, M., 2001
[4] Asmussen S., Albrecher H., Ruin probabilities, Advanced Series on Statistical Science and Applied Probability, 14, World Scientific, Singapore, 2010 | MR | Zbl
[5] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya. II: Model Kramera–Lundberga s eksponentsialnym raspredeleniem razmera trebovanii”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: "Finansovaya i strakhovaya matematika"), 17:1 (2010), 3–24
[6] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya nachalnaya zadacha dlya lineinogo integrodifferentsialnogo uravneniya, voznikayuschego v modelyakh strakhovoi matematiki”, Intern. Scientific Journal Spectral and Evolution Problems, 21:1 (2011), 40–54
[7] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya kraevaya zadacha dlya integrodifferentsialnogo uravneniya v modeli strakhovaniya so sluchainymi premiyami: analiz i chislennoe reshenie”, Zh. vychisl. matem. i matem. fiz., 52:10 (2012), 1812–1846 | MR | Zbl
[8] Belkina T., Konyukhova N., Kurochkin S., “Singular problems for integro-differential equations in dynamic insurance models”, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, 47, 2013, 27–44 | DOI | MR | Zbl
[9] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnye nachalnye i kraevye zadachi dlya integrodifferentsialnykh uravnenii v dinamicheskikh modelyakh strakhovaniya s uchetom investitsii”, Sovremennaya matematika. Fundamentalnye napravleniya, 53, 2014, 5–29 | MR
[10] Belkina T. A., “Teoremy dostatochnosti dlya veroyatnosti nerazoreniya v dinamicheskikh modelyakh strakhovaniya s uchetom investitsii”, Analiz i modelirovanie ekonomicheskikh protsessov, 8, ed. V. Z. Belenkii, TsEMI RAN, M., 2011, 61–74 http://www.cemi.rssi.ru/publication/books/
[11] Belkina T. A., “Risky investment for insurers and sufficiency theorems for the survival probability”, Markov Processes and Related Fields, 20 (2014), 505–525 | MR | Zbl
[12] Paulsen J., Gjessing H. K., “Ruin theory with stochastic return on investments”, Advances in Applied Probability, 29:4 (1997), 965–985 | DOI | MR | Zbl
[13] Frolova A., Kabanov Yu., Pergamenshchikov S., “In the insurance business risky investments are dangerous”, Finance Stochast., 6:2 (2002), 227–235 | DOI | MR | Zbl
[14] Pergamenshchikov S., Zeitouny O., “Ruin probability in the presence of risky investments”, Stochastic Process. Appl., 116:2 (2006), 267–278 | DOI | MR | Zbl
[15] Boikov A. V., Stokhasticheskie modeli kapitala strakhovoi kompanii i otsenivanie veroyatnosti nerazoreniya, Diss. ... kand. fiz.-matem. nauk, MI im. V. A. Steklova RAN, M., 2003
[16] Ramos A., Controlled Markov Models. An Application to the Ruin Problem, PhD. Thesis, Universidad Carlos III de Madrid, Madrid, 2009 http://e-archivo.uc3m.es/handle/10016/5631
[17] Bachelier L., “Theorie de la speculation”, Annales Scientifiques de l'Ecole Normale Superieure, 17 (1900), 21–86 | MR | Zbl
[18] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya. I: Investitsionnye strategii i veroyatnost razoreniya”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: "Finansovaya i strakhovaya matematika"), 16:6 (2009), 961–981
[19] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR
[20] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR
[21] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958
[22] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[23] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR
[24] Birger E. S., Lyalikova (Konyukhova) N. B., “O nakhozhdenii dlya nekotorykh sistem obyknovennykh differentsialnykh uravnenii reshenii s zadannym usloviem na beskonechnosti. I; II”, Zh. vychisl. matem. i matem. fiz., 5:6 (1965), 979–990 ; 6:3 (1966), 446–453 | MR | MR
[25] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:3 (1983), 629–645 | MR | Zbl
[26] Belkina T., Hipp C., Luo S., Taksar M., “Optimal constrained investment in the Cramer–Lundberg model”, Scandinavian Actuarial Journal, 2014, no. 5, 383–404 | DOI | MR
[27] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya singulyarno vozmuschennykh sistem nelineinykh obyknovennykh differentsialnykh uravnenii. I; II”, Differents. ur-niya, 32:1 (1996), 52–61 | MR | Zbl
[28] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965
[29] Gingold H., Rosenblat S., “Differential equations with moving singularities”, SIAM J. Math. Analys., 7:6 (1976), 942–957 | DOI | MR | Zbl
[30] Boikov A. V., “Model Kraméra–Lundberga so stokhasticheskimi premiyami”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 549–553 | DOI | Zbl
[31] Zinchenko N., Andrusiv A., “Risk processes with stochastic premiums”, Theory of Stoch. Proc., 14(30):3–4 (2008), 189–208 | MR | Zbl
[32] Temnov G., “Risk models with stochastic premium and ruin probability estimation”, J. Math. Sci., 196:1 (2014), 84–96 | DOI | MR | Zbl
[33] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR
[34] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya nekotorykh sistem nelineinykh funktsionalno-differentsialnykh uravnenii”, Differents. ur-niya, 31:8 (1995), 1340–1347 | MR | Zbl
[35] Konyukhova N. B., “Singular problems for systems of nonlinear functional-differential equations”, Intern. Scientific Journal Spectral and Evolution Problems, 20 (2010), 199–214
[36] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:4 (1961), 733–737 | MR | Zbl
[37] Abramov A. A., Balla K., Konyukhova N. B., Perenos granichnykh uslovii iz osobykh tochek dlya sistem obyknovennykh differentsialnykh uravnenii, Soobsch. po vychisl. matem., VTs AN SSSR, M., 1981
[38] Abramov A. A., Konyukhova N. B., Balla K., “Ustoichivye nachalnye mnogoobraziya i singulyarnye kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Comput. Math. Banach Center Publs., 13, PWN — Polish Scient. Pubis., Warsaw, 1984, 319–351
[39] Abramov A. A., Konyukhova N. B., Perenos dopustimykh granichnykh uslovii iz osoboi tochki dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii, Soobsch. po prikl. matem., VTs AN SSSR, M., 1985
[40] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sov. J. Numer. Anal. Math. Modelling, 1:4 (1986), 245–265 | DOI | MR | Zbl
[41] Abramov A. A., Ditkin V. V., Konyukhova N. B., Pariiskii B. S., Ulyanova V. I., “Vychislenie sobstvennykh znachenii i sobstvennykh funktsii obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1155–1173 | MR | Zbl
[42] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl
[43] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR
[44] Kalashnikov V., Norberg R., “Power tailed ruin probabilities in the presence of risky investments”, Stoch. Proc. Appl., 98 (2002), 211–228 | DOI | MR | Zbl
[45] Laubis B., Lin J.-E., “Optimal investment allocation in a jump diffusion risk model with investment: a numerical analysis of several examples”, Proc. 43rd Actuarial Research Conf. (2008) http://www.soa.org/newsand-publications/publications/proceedings/arch/arch-2009-issl.aspx