Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 47-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér–Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of “degenerate” problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.
@article{ZVMMF_2016_56_1_a3,
     author = {T. A. Belkina and N. B. Konyukhova and S. V. Kurochkin},
     title = {Dynamical insurance models with investment: {Constrained} singular problems for integrodifferential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {47--98},
     year = {2016},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/}
}
TY  - JOUR
AU  - T. A. Belkina
AU  - N. B. Konyukhova
AU  - S. V. Kurochkin
TI  - Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 47
EP  - 98
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/
LA  - ru
ID  - ZVMMF_2016_56_1_a3
ER  - 
%0 Journal Article
%A T. A. Belkina
%A N. B. Konyukhova
%A S. V. Kurochkin
%T Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 47-98
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/
%G ru
%F ZVMMF_2016_56_1_a3
T. A. Belkina; N. B. Konyukhova; S. V. Kurochkin. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 47-98. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a3/

[1] Grandell J., Aspects of Risk Theory, Springer, Berlin–New York, 1991 | MR | Zbl

[2] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007

[3] Bauerc N., Gerber X., Dzhans D., Nesbitt S., Khikman Dzh., Aktuarnaya matematika, Yanus-K, M., 2001

[4] Asmussen S., Albrecher H., Ruin probabilities, Advanced Series on Statistical Science and Applied Probability, 14, World Scientific, Singapore, 2010 | MR | Zbl

[5] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya. II: Model Kramera–Lundberga s eksponentsialnym raspredeleniem razmera trebovanii”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: "Finansovaya i strakhovaya matematika"), 17:1 (2010), 3–24

[6] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya nachalnaya zadacha dlya lineinogo integrodifferentsialnogo uravneniya, voznikayuschego v modelyakh strakhovoi matematiki”, Intern. Scientific Journal Spectral and Evolution Problems, 21:1 (2011), 40–54

[7] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya kraevaya zadacha dlya integrodifferentsialnogo uravneniya v modeli strakhovaniya so sluchainymi premiyami: analiz i chislennoe reshenie”, Zh. vychisl. matem. i matem. fiz., 52:10 (2012), 1812–1846 | MR | Zbl

[8] Belkina T., Konyukhova N., Kurochkin S., “Singular problems for integro-differential equations in dynamic insurance models”, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, 47, 2013, 27–44 | DOI | MR | Zbl

[9] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnye nachalnye i kraevye zadachi dlya integrodifferentsialnykh uravnenii v dinamicheskikh modelyakh strakhovaniya s uchetom investitsii”, Sovremennaya matematika. Fundamentalnye napravleniya, 53, 2014, 5–29 | MR

[10] Belkina T. A., “Teoremy dostatochnosti dlya veroyatnosti nerazoreniya v dinamicheskikh modelyakh strakhovaniya s uchetom investitsii”, Analiz i modelirovanie ekonomicheskikh protsessov, 8, ed. V. Z. Belenkii, TsEMI RAN, M., 2011, 61–74 http://www.cemi.rssi.ru/publication/books/

[11] Belkina T. A., “Risky investment for insurers and sufficiency theorems for the survival probability”, Markov Processes and Related Fields, 20 (2014), 505–525 | MR | Zbl

[12] Paulsen J., Gjessing H. K., “Ruin theory with stochastic return on investments”, Advances in Applied Probability, 29:4 (1997), 965–985 | DOI | MR | Zbl

[13] Frolova A., Kabanov Yu., Pergamenshchikov S., “In the insurance business risky investments are dangerous”, Finance Stochast., 6:2 (2002), 227–235 | DOI | MR | Zbl

[14] Pergamenshchikov S., Zeitouny O., “Ruin probability in the presence of risky investments”, Stochastic Process. Appl., 116:2 (2006), 267–278 | DOI | MR | Zbl

[15] Boikov A. V., Stokhasticheskie modeli kapitala strakhovoi kompanii i otsenivanie veroyatnosti nerazoreniya, Diss. ... kand. fiz.-matem. nauk, MI im. V. A. Steklova RAN, M., 2003

[16] Ramos A., Controlled Markov Models. An Application to the Ruin Problem, PhD. Thesis, Universidad Carlos III de Madrid, Madrid, 2009 http://e-archivo.uc3m.es/handle/10016/5631

[17] Bachelier L., “Theorie de la speculation”, Annales Scientifiques de l'Ecole Normale Superieure, 17 (1900), 21–86 | MR | Zbl

[18] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya. I: Investitsionnye strategii i veroyatnost razoreniya”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya: "Finansovaya i strakhovaya matematika"), 16:6 (2009), 961–981

[19] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR

[20] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR

[21] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[22] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[23] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[24] Birger E. S., Lyalikova (Konyukhova) N. B., “O nakhozhdenii dlya nekotorykh sistem obyknovennykh differentsialnykh uravnenii reshenii s zadannym usloviem na beskonechnosti. I; II”, Zh. vychisl. matem. i matem. fiz., 5:6 (1965), 979–990 ; 6:3 (1966), 446–453 | MR | MR

[25] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:3 (1983), 629–645 | MR | Zbl

[26] Belkina T., Hipp C., Luo S., Taksar M., “Optimal constrained investment in the Cramer–Lundberg model”, Scandinavian Actuarial Journal, 2014, no. 5, 383–404 | DOI | MR

[27] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya singulyarno vozmuschennykh sistem nelineinykh obyknovennykh differentsialnykh uravnenii. I; II”, Differents. ur-niya, 32:1 (1996), 52–61 | MR | Zbl

[28] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965

[29] Gingold H., Rosenblat S., “Differential equations with moving singularities”, SIAM J. Math. Analys., 7:6 (1976), 942–957 | DOI | MR | Zbl

[30] Boikov A. V., “Model Kraméra–Lundberga so stokhasticheskimi premiyami”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 549–553 | DOI | Zbl

[31] Zinchenko N., Andrusiv A., “Risk processes with stochastic premiums”, Theory of Stoch. Proc., 14(30):3–4 (2008), 189–208 | MR | Zbl

[32] Temnov G., “Risk models with stochastic premium and ruin probability estimation”, J. Math. Sci., 196:1 (2014), 84–96 | DOI | MR | Zbl

[33] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[34] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya nekotorykh sistem nelineinykh funktsionalno-differentsialnykh uravnenii”, Differents. ur-niya, 31:8 (1995), 1340–1347 | MR | Zbl

[35] Konyukhova N. B., “Singular problems for systems of nonlinear functional-differential equations”, Intern. Scientific Journal Spectral and Evolution Problems, 20 (2010), 199–214

[36] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:4 (1961), 733–737 | MR | Zbl

[37] Abramov A. A., Balla K., Konyukhova N. B., Perenos granichnykh uslovii iz osobykh tochek dlya sistem obyknovennykh differentsialnykh uravnenii, Soobsch. po vychisl. matem., VTs AN SSSR, M., 1981

[38] Abramov A. A., Konyukhova N. B., Balla K., “Ustoichivye nachalnye mnogoobraziya i singulyarnye kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Comput. Math. Banach Center Publs., 13, PWN — Polish Scient. Pubis., Warsaw, 1984, 319–351

[39] Abramov A. A., Konyukhova N. B., Perenos dopustimykh granichnykh uslovii iz osoboi tochki dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii, Soobsch. po prikl. matem., VTs AN SSSR, M., 1985

[40] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sov. J. Numer. Anal. Math. Modelling, 1:4 (1986), 245–265 | DOI | MR | Zbl

[41] Abramov A. A., Ditkin V. V., Konyukhova N. B., Pariiskii B. S., Ulyanova V. I., “Vychislenie sobstvennykh znachenii i sobstvennykh funktsii obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1155–1173 | MR | Zbl

[42] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl

[43] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR

[44] Kalashnikov V., Norberg R., “Power tailed ruin probabilities in the presence of risky investments”, Stoch. Proc. Appl., 98 (2002), 211–228 | DOI | MR | Zbl

[45] Laubis B., Lin J.-E., “Optimal investment allocation in a jump diffusion risk model with investment: a numerical analysis of several examples”, Proc. 43rd Actuarial Research Conf. (2008) http://www.soa.org/newsand-publications/publications/proceedings/arch/arch-2009-issl.aspx