Category-theoretic models of algebraic computer systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 167-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems’ architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
@article{ZVMMF_2016_56_1_a11,
     author = {S. P. Kovalyov},
     title = {Category-theoretic models of algebraic computer systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {167--179},
     year = {2016},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a11/}
}
TY  - JOUR
AU  - S. P. Kovalyov
TI  - Category-theoretic models of algebraic computer systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 167
EP  - 179
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a11/
LA  - ru
ID  - ZVMMF_2016_56_1_a11
ER  - 
%0 Journal Article
%A S. P. Kovalyov
%T Category-theoretic models of algebraic computer systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 167-179
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a11/
%G ru
%F ZVMMF_2016_56_1_a11
S. P. Kovalyov. Category-theoretic models of algebraic computer systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 167-179. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a11/

[1] Nepeivoda N. N., “Ot chislennogo modelirovaniya k algebraicheskomu”, Tr. mezhdunar. konf. RASO'2012, v. 1, IPU RAN, M., 2012, 93–103

[2] Borkar S., Chien A. A., “The future of microprocessors”, Communications of the ACM, 54:5 (2011), 67–77 | DOI

[3] Mills J. W., Parker M., Himebaugh B., Shue C., Kopecky B., Weilemann C., “"Empty space"computes: the evolution of an unconventional supercomputer”, Proc. 3rd Conf. Computing Frontiers (Ischia, 2006), 115–126

[4] Voevodin V. V., “Otobrazhenie problem vychislitelnoi matematiki na arkhitekturu vychislitelnykh sistem”, Vychisl. metody i programmirovanie, 1 (2000), 37–44

[5] Smelyanskii R. L., Metody analiza i otsenki proizvoditelnosti vychislitelnykh sistem, MGU, M., 1990

[6] Toporkov V. V., Toporkova A. S., “Optimizatsiya kharakteristik vychislitelnykh protsessov v masshtabiruemykh resursakh”, Avtomatika i telemekhan., 2002, no. 7, 149–157

[7] Kulagin V. P., “Problemy analiza i sinteza struktur parallelnykh vychislitelnykh sistem”, Vestn. MGTU MIREA, 2013, no. 1(1), 1–19

[8] Fiadeiro J. L., Categories for software engineering, Springer, Berlin, 2005 | Zbl

[9] Diskretnaya matematika i matematicheskie voprosy kibernetiki, v. I, Nauka, M., 1974

[10] Kovalev S. P., “Matematicheskie osnovaniya kompyuternoi arifmetiki”, Matem. trudy, 8:1 (2005), 3–42 | MR

[11] Foster A. L., Pixley A. F., “Semi-categorical algebras I: Semi-primal algebras”, Math. Z., 83:2 (1964), 147–169 | DOI | MR | Zbl

[12] Zhurkov S. V., Pinus A. G., “Ob avtomorfizmakh shkal potentsialov vychislimosti $n$-elementnykh algebr”, Sib. matem. zhurnal, 44:3 (2003), 606–621 | MR | Zbl

[13] Kovalev S. P., “Kategoriya vychislitelnykh sistem”, Algebra i logika: teoriya i prilozheniya, Tez. dokl. Mezhdunar. konf., SFU, Krasnoyarsk, 2013, 64–66

[14] Adamek J., Herrlich H., Strecker G., Abstract and concrete categories, Wiley and Sons, NY, 1990 | MR | Zbl

[15] Kovalev S. P., “Algebraicheskii podkhod k proektirovaniyu raspredelennykh vychislitelnykh sistem”, Sib. zhurnal industr. matem., X:2(30) (2007), 70–84 | Zbl

[16] Latsis A. O., Parallelnaya obrabotka dannykh, Akademiya, M., 2010

[17] Giavitto J.-L., Michel O., Spicher A., “Unconventional and nested computations in spatial computing”, Internat. J. Unconventional Comput., 9:1–2 (2013), 71–95

[18] Tanenbaum E., Arkhitektura kompyutera, 4-e izd., Piter, SPb., 2002

[19] Karpenko A. S., Logiki Lukasevicha i prostye chisla, Nauka, M., 2000 | MR

[20] Ryabko B. Ya., Fionov A. N., Osnovy sovremennoi kriptografii, Nauchnyi mir, M., 2004