Category-theoretic models of algebraic computer systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 167-179
Voir la notice de l'article provenant de la source Math-Net.Ru
A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systemsвЂTM architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
@article{ZVMMF_2016_56_1_a11,
author = {S. P. Kovalyov},
title = {Category-theoretic models of algebraic computer systems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {167--179},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a11/}
}
TY - JOUR AU - S. P. Kovalyov TI - Category-theoretic models of algebraic computer systems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 167 EP - 179 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a11/ LA - ru ID - ZVMMF_2016_56_1_a11 ER -
S. P. Kovalyov. Category-theoretic models of algebraic computer systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 167-179. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a11/