Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 155-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-level scheme for modeling nanosized semiconductor heterostructures with account for spontaneous and piezoelectric polarization effects is presented. The scheme combines quantummechanical calculations at the atomic level for obtaining the charge density on heterointerfaces, calculation of the distribution of carriers in the heterostructure based on the solution to the Schrödinger and Poisson equations, and the calculation of electron mobility in the two-dimensional electron gas with account for various scattering mechanisms. To speed up the computations of electron density in the heterostructure, the approach based on the approximation of the nonlinear dependence of the electron density on the potential in combination with the linearization of the Poisson equation is used. The efficiency of this approach in problems of the class in question is demonstrated.
@article{ZVMMF_2016_56_1_a10,
     author = {K. K. Abgaryan and D. L. Reviznikov},
     title = {Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {155--166},
     year = {2016},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a10/}
}
TY  - JOUR
AU  - K. K. Abgaryan
AU  - D. L. Reviznikov
TI  - Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 155
EP  - 166
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a10/
LA  - ru
ID  - ZVMMF_2016_56_1_a10
ER  - 
%0 Journal Article
%A K. K. Abgaryan
%A D. L. Reviznikov
%T Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 155-166
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a10/
%G ru
%F ZVMMF_2016_56_1_a10
K. K. Abgaryan; D. L. Reviznikov. Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 155-166. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a10/

[1] Borisenko V. E., Vorobeva A. I., Utkina E. A., Nanoelektronika, Binom. Laboratoriya znanii, M., 2009

[2] Ambacher O., Majewski J., Miskys C., Link A., Hermann M., Eickhoff M., Stutzmann M., Bernardini F., Fiorentini V., Tilak V., Schaff B., Eastman L. F., “Pyroelectric properties of $\mathrm{Al(In)GaN/GaN}$ hetero- and quantum well structures”, J. Phys.: Condens. Matter, 14 (2002), 3399–3434 | DOI

[3] Abgaryan K., Mutigullin I., Reviznikov D., “Computational model of 2DEG mobility in the $\mathrm{AlGaN/GaN}$ heterostructures”, Phys. Status Solidi, C12:2 (2015), 407–411

[4] Abgaryan K. K., Khachaturov V. R., “Kompyuternoe modelirovanie ustoichivykh struktur kristallicheskikh materialov”, Zh. vychisl. matem. i matem. fiz., 49:8 (2009), 1517–1530 | MR | Zbl

[5] Kohn W., Sham L. J., “Self-consistent equations including exchange and correlation effects”, Phys. Rev., 140 (1965), A1133–A1138 | DOI | MR

[6] Kresse G., Furthmuller J., “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Phys. Rev., B54 (1996), 11169 | DOI

[7] Vasileska D., Goodnick S. M., Goodnick S., Computational electronics: semiclassical and quantum device modeling and simulation, CRC Press, 2010

[8] Protasov D. Yu., Malin T. V., Tikhonov A. V., Tsatsulnikov A. F., Zhuravlev K. S., “Rasseyanie elektronov v geterostrukturakh $\mathrm{AlGaN/GaN}$ s dvumernym elektronnym gazom”, Fizika i tekhnika poluprovodnikov, 47:1 (2013), 36–47

[9] Zubkov V. I., “Modelirovanie volt-faradnykh kharakteristik geterostruktur s kvantovymi yamami s pomoschyu samosoglasovannogo resheniya uravnenii Shredingera i Puassona”, Fizika i tekhnika poluprovodnikov, 40:10 (2006), 1236–1240

[10] Supryadkina I., Abgaryan K., Bazhanov D., Mutigullin I., “Study of the polarizations of $\mathrm{(Al,Ga,AlGa)N}$ nitride compounds and the charge density of various interfaces based on them”, Semiconductors, 47:12 (2013), 1621–1625 | DOI

[11] Trellakis A., Galick A. T., Pacelli A., Ravaioli U., “Iteration scheme for solution of the two-dimensional Schrodinger–Poisson equations in quantum structures”, J. Appl. Phys., 81:12 (1997), 7880–7884 | DOI

[12] Trellakis A., Ravaioli U., “Computational issues in the simulation of semiconductor quantum wires”, Comput. Methods. Appl. Mech. Engrg., 181 (2000), 437–449 | DOI | Zbl

[13] Trellakis A., Galick A. T., Pacelli A., Ravaioli U., “Comparison of iteration schemes for the solution of the multidimensional Schrodinges–Poisson equations”, VLSI DESIGN, 8:1–4 (1997), 105–109

[14] Koen-Tannudzhi K., Diu B., Laloe F., Kvantovaya mekhanika, v. 2, URSS, M., 2015

[15] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, Izd. dom Intellekt, M., 2008

[16] Yarar Z., Ozdemir B., Ozdemir M., “Mobility of electrons in a $\mathrm{AIGaN/GaN}$ QW: effect of temperature, applied field, surface roughness and well width”, Phys. Stat. Sol. (b), 242:14 (2005), 2872–2884 | DOI