Infinite-horizon boundary control of distributed systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 16-28

Voir la notice de l'article provenant de la source Math-Net.Ru

For a boundary controlled dynamic system, algorithms for solving the problem of tracking reference motion and the problem of tracking reference control are described. The algorithms are robust to information noise and computational errors. The solution method is based on the extremal shift method from the theory of positional differential games.
@article{ZVMMF_2016_56_1_a1,
     author = {V. I. Maksimov and Yu. S. Osipov},
     title = {Infinite-horizon boundary control of distributed systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a1/}
}
TY  - JOUR
AU  - V. I. Maksimov
AU  - Yu. S. Osipov
TI  - Infinite-horizon boundary control of distributed systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 16
EP  - 28
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a1/
LA  - ru
ID  - ZVMMF_2016_56_1_a1
ER  - 
%0 Journal Article
%A V. I. Maksimov
%A Yu. S. Osipov
%T Infinite-horizon boundary control of distributed systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 16-28
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a1/
%G ru
%F ZVMMF_2016_56_1_a1
V. I. Maksimov; Yu. S. Osipov. Infinite-horizon boundary control of distributed systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 16-28. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a1/