@article{ZVMMF_2016_56_1_a1,
author = {V. I. Maksimov and Yu. S. Osipov},
title = {Infinite-horizon boundary control of distributed systems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {16--28},
year = {2016},
volume = {56},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a1/}
}
TY - JOUR AU - V. I. Maksimov AU - Yu. S. Osipov TI - Infinite-horizon boundary control of distributed systems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 16 EP - 28 VL - 56 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a1/ LA - ru ID - ZVMMF_2016_56_1_a1 ER -
V. I. Maksimov; Yu. S. Osipov. Infinite-horizon boundary control of distributed systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 16-28. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a1/
[1] Lasiecka I., Triggiani R., Differential and algebraic Riccati equations with applications to boundary/point control problems: continuous theory and approximation theory, Lecture Notes in Control and Information Sciences, 164, Springer-Verlag, New York, 1991 | DOI | MR
[2] Lasiecka I., “Unified theory for abstract parabolic boundary problems — a semigroup approach”, Appl. Math. and Optim., 6:4 (1980), 287–334 | DOI | MR
[3] Lasieska I., Triggiani R., “Dirichelt boundary control problem for parabolic equations with quadratic cost: analicy and Riccati feedback synthesis”, SIAM J. Control and Optimizat., 21:5 (1983), 41–67 | DOI | MR
[4] Flandoli F., Lasieska I., Triggiani R., “Algebraic Riccati equations with nonsmoothing observation arising in Hiperbolic and Euler–Bernoulli boundary control problems”, Annali di Matematica Pura ed Applicata, 153 (1988), 307–382 | DOI | MR | Zbl
[5] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995 | MR | Zbl
[6] Osipov Yu. S., Pandolfi L., Maksimov V. I., “Zadacha robastnogo granichnogo upravleniya: sluchai kraevykh uslovii Dirikhle”, Dokl. AN, 374:3 (2000), 310–312 | MR | Zbl
[7] Osipov Yu. S., Pandolfi L., Maksimov V. I., “Problems of dynamic reconstruction and robust boundary control: the case of Dirichlet boundary conditions”, J. Inverse and III-Posed Problems, 9:2 (2001), 149–162 | MR | Zbl
[8] Maksimov V. I., “Rekonstruktsiya upravlenii v eksponentsialno ustoichivykh lineinykh sistemakh, podverzhennykh malym vozmuscheniyam”, Prikl. matem. i mekhan., 71:6 (2007), 945–955 | MR | Zbl
[9] Kryazhimskii A. V., Maksimov V. I., “Zadachi resursosberegayuschego slezheniya na beskonechnom promezhutke vremeni”, Differents. ur-niya, 47:4 (2011), 993–1002 | MR | Zbl
[10] Lasiecka I., Triggiani R., Control theory for partial differential equations: continuous and approximation theories, v. 1, Cambridge University Press, Cambridge, 2000 | MR
[11] Bretten T., Kunisch K., “Riccati-based feedback control of the monodomain equations with the Fitzhugh–Nagumo model”, SIAM J. Control and Optimizat., 52:6 (2014), 4057–4081 | DOI | MR
[12] Yuhu Wu, Xiaoping Xue, “Boundary feedback stabilization of Rirchhoff-type Timoshenko system”, J. Dyn. Control. Syst., 209 (2014), 523–538 | MR
[13] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR
[14] Lasiecka I., “Bondary control of parabolic systems: regularity of optimal solutions”, Appl. Math. and Optimizat., 4:4 (1978), 301–328 | MR
[15] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978