Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Local a posteriori estimates of the accuracy of approximate solutions to ill-posed inverse problems with discontinuous solutions from the classes of functions of several variables with bounded variations of the Hardy or Giusti type are studied. Unlike global estimates (in the norm), local estimates of accuracy are carried out using certain linear estimation functionals (e.g., using the mean value of the solution on a given fragment of its support). The concept of a locally extra-optimal regularizing algorithm for solving ill-posed inverse problems, which has an optimal in order local a posteriori estimate, was introduced. A method for calculating local a posteriori estimates of accuracy with the use of some distinguished classes of linear functionals for the problems with discontinuous solutions is proposed. For linear inverse problems, the method is bases on solving specialized convex optimization problems. Examples of locally extra-optimal regularizing algorithms and results of numerical experiments on a posteriori estimation of the accuracy of solutions for different linear estimation functionals are presented.
@article{ZVMMF_2016_56_1_a0,
     author = {A. S. Leonov},
     title = {Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--15},
     year = {2016},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 3
EP  - 15
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/
LA  - ru
ID  - ZVMMF_2016_56_1_a0
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 3-15
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/
%G ru
%F ZVMMF_2016_56_1_a0
A. S. Leonov. Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/

[1] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[2] Vinokurov V. A., Gaponenko Yu. L., “Aposteriornye otsenki resheniya nekorrektnykh obratnykh zadach”, Dokl. AN SSSR, 263:2 (1982), 277–280 | MR

[3] Dorofeev K. Yu., Titarenko V. N., Yagola A. G., “Algoritmy postroeniya aposteriornykh otsenok pogreshnostei dlya nekorrektnykh zadach”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 12–25 | MR | Zbl

[4] Yagola A. G., Nikolaeva N. N., Titarenko V. N., “Otsenka pogreshnosti resheniya uravneniya Abelya na mnozhestvakh monotonnykh i vypuklykh funktsii”, Sib. zhurnal vychisl. matem., 6:2 (2003), 171–180

[5] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, Knizhnyi dom “LIBROKOM”, M., 2009

[6] Leonov A. S., “Ob aposteriornykh otsenkakh tochnosti resheniya lineinykh nekorrektno postavlennykh zadach i ekstraoptimalnykh regulyarizuyuschikh algoritmakh”, Vychisl. metody i programmirovanie, 11:1 (2010), 14–24 | Zbl

[7] Leonov A. S., “Ekstraoptimalnye aposteriornye otsenki tochnosti resheniya nekorrektnykh zadach prodolzheniya potentsialnykh geofizicheskikh polei”, Fizika Zemli, 2011, no. 6, 69–78

[8] Leonov A. S., “Aposteriornye otsenki tochnosti resheniya nekorrektno postavlennykh obratnykh zadach i ekstraoptimalnye regulyarizuyuschie algoritmy ikh resheniya”, Sib. zhurnal vychisl. matem., 15:1 (2012), 85–102

[9] Leonov A. S., “Extra-optimal methods for solving ill-posed problems”, J. of Inverse and III-posed Problems, 20:5–6 (2012), 637–665 | MR | Zbl

[10] Bakushinskii A. B., “Aposteriornye otsenki tochnosti dlya priblizhennykh reshenii neregulyarnykh operatornykh uravnenii”, Dokl. AN, 437:4 (2011), 439–440

[11] Bakushinsky A. B., Smirnova A., Liu Hui, “A posteriori error analysis for unstable models”, J. of Inverse and III-posed Problems, 20:4 (2012), 411–428 | MR | Zbl

[12] Korolev Y. M., Yagola A. G., “On inverse problems in partially ordered spaces with a priori information”, J. of Inverse and III-posed Problems, 20:4 (2012), 567–573 | MR | Zbl

[13] Leonov A. S., “Locally extra-optimal regularizing algorithms”, J. of Inverse and III-posed Problems, 22:5 (2014), 713–737 | MR | Zbl

[14] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[15] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[16] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[17] Vainikko G. M., Metody resheniya lineinykh nekorrektno postavlennykh zadach v gilbertovykh prostranstvakh, Izd-vo TGU, Tartu, 1982 | MR

[18] Tanana V. P., Rekant M. A., Yanchenko S. I., Optimizatsiya metodov resheniya operatornykh uravnenii, Izd-vo Uralskogo un-ta, Sverdlovsk, 1987 | MR

[19] Bakushinskii A. B., Goncharskii A. V., Iteratsionnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[20] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 1996 | MR | Zbl

[21] Clarkson J. A., Adams C. R., “On definition of bounded variation for functions of two variables”, Trans. Amer. Math. Soc., 35:4 (1933), 824–854 | DOI | MR

[22] Vitushkin A. G., O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955

[23] Guisti E., Minimal surfaces and functions of bounded variation, Birkhauser, Boston–Basel–Stuttgart, 1984 | MR

[24] Leonov A. S., “Funktsii neskolkikh peremennykh s ogranichennoi variatsiei v nekorrektnykh zadachakh”, Zh. vychisl. matem. i matem. fiz., 36:9 (1996), 35–49 | MR | Zbl

[25] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981

[26] Acar R., Vogel C., “Analysis of BV penalty methods for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl

[27] Khill E., Funktsionalnyi analiz i polugruppy, Izd-vo Inostr. lit., M., 1951

[28] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya dvumernykh nekorrektnykh zadach s razryvnymi resheniyami”, Zh. vychisl. matem. i matem. fiz., 39:12 (1999), 1939–1944 | MR | Zbl

[29] Leonov A. S., “Numerical piecewise-uniform regularization for two-dimensional ill-posed problems”, Inverse Problems, 15 (1999), 1165–1176 | DOI | MR | Zbl