Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Local a posteriori estimates of the accuracy of approximate solutions to ill-posed inverse problems with discontinuous solutions from the classes of functions of several variables with bounded variations of the Hardy or Giusti type are studied. Unlike global estimates (in the norm), local estimates of accuracy are carried out using certain linear estimation functionals (e.g., using the mean value of the solution on a given fragment of its support). The concept of a locally extra-optimal regularizing algorithm for solving ill-posed inverse problems, which has an optimal in order local a posteriori estimate, was introduced. A method for calculating local a posteriori estimates of accuracy with the use of some distinguished classes of linear functionals for the problems with discontinuous solutions is proposed. For linear inverse problems, the method is bases on solving specialized convex optimization problems. Examples of locally extra-optimal regularizing algorithms and results of numerical experiments on a posteriori estimation of the accuracy of solutions for different linear estimation functionals are presented.
@article{ZVMMF_2016_56_1_a0,
     author = {A. S. Leonov},
     title = {Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 3
EP  - 15
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/
LA  - ru
ID  - ZVMMF_2016_56_1_a0
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 3-15
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/
%G ru
%F ZVMMF_2016_56_1_a0
A. S. Leonov. Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_1_a0/