On the stability of reverse flow vortices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2092-2097 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear stability of vortex zones of reverse flows in a plane-parallel ideal incompressible flow is proved. The zones originate at large values of a dimensionless parameter taken in the inflow part of the boundary, the so-called vorticity level. Positive or negative values of this parameter lead to a left- or right-hand oriented vortex, respectively.
@article{ZVMMF_2016_56_12_a9,
     author = {O. V. Troshkin},
     title = {On the stability of reverse flow vortices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2092--2097},
     year = {2016},
     volume = {56},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a9/}
}
TY  - JOUR
AU  - O. V. Troshkin
TI  - On the stability of reverse flow vortices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 2092
EP  - 2097
VL  - 56
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a9/
LA  - ru
ID  - ZVMMF_2016_56_12_a9
ER  - 
%0 Journal Article
%A O. V. Troshkin
%T On the stability of reverse flow vortices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 2092-2097
%V 56
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a9/
%G ru
%F ZVMMF_2016_56_12_a9
O. V. Troshkin. On the stability of reverse flow vortices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2092-2097. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a9/

[1] Troshkin O. V., “Algebraicheskaya struktura dvumernykh statsionarnykh uravnenii Nave–Stoksa i nelokalnye teoremy edinstvennosti”, Dokl. SSSR, 298:6 (1988), 1372–1376 | Zbl

[2] Troshkin O. V., Voprosy kachestvennogo analiza uravnenii matematicheskoi gidrodinamiki, Dis. ... dokt. fiz.-matem. nauk, VTs AN SSSR, M., 1990, 297 pp.

[3] Lavrentev M. A., Shabat B. V., Problemy gidromekhaniki, ikh matematicheskie modeli, Nauka, M., 1973

[4] Dezin A. A., “Ob odnom klasse vektornykh polei”, Kompleksnyi analiz i ego prilozheniya, Nauka, M., 1978, 203–208

[5] Arnold V. I., “Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique de fluids parfaits”, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361 | DOI | MR | Zbl

[6] Troshkin O. V., “O topologicheskom analize struktury gidrodinamicheskikh techenii”, Uspekhi matem. nauk, 43:4(262) (1988), 129–158

[7] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[8] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M., 1950, 472 pp.

[9] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[10] Miln-Tomson L. N., Teoreticheskaya gidrodinamika, Mir, M., 1964

[11] Dezin A. A., “Invariantnye formy i nekotorye strukturnye svoistva gidrodinamicheskikh uravnenii Eilera”, Zeit. fur Anal. Und ihre Anwendungen, 2:5 (1983), 401–409 | DOI | Zbl

[12] Troshkin O. V., “Dvumernaya zadacha o protekanii dlya statsionarnykh uravnenii Eilera”, Matem. sb., 180:3 (1989), 354–374

[13] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[14] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, Izd-vo inostr. lit., M., 1962

[15] Yudovich V. I., “Dvumernaya nestatsionarnaya zadacha protekaniya idealnoi zhidkosti cherez zadannuyu oblast”, Matem. sb., 64 (1964), 562–588